Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spontaneous receptor-independent heterotrimeric G-protein signalling in an RGS mutant

Abstract

Tripartite G-protein-coupled receptors (GPCRs) represent one of the largest groups of signal transducers, transmitting signals from hormones, neuropeptides, odorants, food and light1,2. Ligand-bound receptors catalyse GDP/GTP exchange on the G-protein α-subunit (Gα), leading to α-GTP separation from the βγ subunits and pathway activation. Activating mutations in the receptors or G proteins underlie many human diseases, including some cancers, dwarfism and premature puberty. Regulators of G-protein signalling (RGS proteins) are known to modulate the level and duration of ligand-induced signalling by accelerating the intrinsic GTPase activity of the Gα subunit, and thus reformation of the inactive GDP-bound Gα3,4,5. Here we find that even in the absence of receptor, mutation of the RGS family member Sst2 (refs 69) permits spontaneous activation of the G-protein-coupled mating pathway in Saccharomyces cerevisiae at levels normally seen only in the presence of ligand. Our work demonstrates the occurence of spontaneous tripartite G-protein signalling in vivo and identifies a requirement for RGS proteins in preventing such receptor-independent activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: sst2Δ mating morphologies are not the result of mating-type switching.
Figure 2: sst2Δ morphologies require the mating pathway, but not receptor activation.
Figure 3: Transcriptional induction in sst2Δ cells at levels seen in mating wild-type cells.
Figure 4: sst2Δ mating morphologies are the result of Gα activation.

Similar content being viewed by others

References

  1. Farfel, Z., Bourne, H.R. & Iiri, T. The expanding spectrum of G protein diseases. N. Engl. J. Med. 340, 1012–1020 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Spiegel, A.M. Defects in G protein-coupled signal transduction in human disease. Annu. Rev. Physiol. 58, 143–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Berman, D.M., Wilkie, T.M. & Gilman, A.G. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell 86, 445–452 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, C.K. et al. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Nature 403, 557–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Ross, E.M. & Wilkie, T.M. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem. 69, 795–827 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Chan, R.K. & Otte, C.A. Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol. Cell. Biol. 2, 11–20 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chan, R.K. & Otte, C.A. Physiological characterization of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol. Cell. Biol 2, 21–29 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koelle, M.R. & Horvitz, H.R. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84, 115–125 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Druey, K.M., Blumer, K.J., Kang, V.H. & Kehrl, J.H. Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature 379, 742–746 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Elion, E.A. Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3, 573–581 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Apanovitch, D.M., Slep, K.C., Sigler, P.B. & Dohlman, H.G. Sst2 is a GTPase-activating protein for Gpa1: purification and characterization of a cognate RGS-G alpha protein pair in yeast. Biochemistry 37, 4815–4822 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Dohmen, R.J., Wu, P. & Varshavsky, A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273–1276 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Jenness, D.D. & Spatrick, P. Down regulation of the alpha-factor pheromone receptor in S. cerevisiae. Cell 46, 345–353 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Julius, D., Brake, A., Blair, L., Kunisawa, R. & Thorner, J. Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor. Cell 37, 1075–1089 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Hartwell, L.H. Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J. Cell Biol. 85, 811–822 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Whiteway, M. et al. The STE4 and STE18 genes of yeast encode potential beta and gamma subunits of the mating factor receptor-coupled G protein. Cell 56, 467–477 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Perlman, R., Yablonski, D., Simchen, G. & Levitzki, A. Cloning of the STE5 gene of Saccharomyces cerevisiae as a suppressor of the mating defect of cdc25 temperature-sensitive mutants. Proc. Natl Acad. Sci. USA 90, 5474–5478 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kraakman, L. et al. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol. Microbiol. 32, 1002–1012 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Dolan, J.W. & Fields, S. Cell-type-specific transcription in yeast. Biochim. Biophys. Acta 1088, 155–169 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Dohlman, H.G., Apaniesk, D., Chen, Y., Song, J. & Nusskern, D. Inhibition of G-protein signaling by dominant gain-of-function mutations in Sst2p, a pheromone desensitization factor in Saccharomyces cerevisiae. Mol. Cell Biol. 15, 3635–3643 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mateus, C. & Avery, S.V. Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast 16, 1313–1323 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Miller, R.T., Masters, S.B., Sullivan, K.A., Beiderman, B. & Bourne, H.R. A mutation that prevents GTP-dependent activation of the alpha chain of Gs. Nature 334, 712–715 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Stone, D.E. & Reed, S.I. G protein mutations that alter the pheromone response in Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 4439–4446 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dohlman, H.G., Song, J., Ma, D., Courchesne, W.E. & Thorner, J. Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit). Mol. Cell Biol. 16, 5194–5209 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. DiBello, P.R. et al. Selective uncoupling of RGS action by a single point mutation in the G protein alpha-subunit. J. Biol. Chem. 273, 5780–5784 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Pauwels, P.J. & Wurch, T. Review: amino acid domains involved in constitutive activation of G-protein-coupled receptors. Mol. Neurobiol. 17, 109–135 (2001).

    Article  Google Scholar 

  27. Morisset, S. et al. High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 408, 860–864 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Linder, M.E., Ewald, D.A., Miller, R.J. & Gilman, A.G. Purification and characterization of Go alpha and three types of Gi alpha after expression in Escherichia coli. J. Biol. Chem. 265, 8243–8251 (1990).

    CAS  PubMed  Google Scholar 

  29. Graziano, M.P., Freissmuth, M. & Gilman, A.G. Expression of Gs alpha in Escherichia coli. Purification and properties of two forms of the protein. J. Biol. Chem. 264, 409–418 (1989).

    CAS  PubMed  Google Scholar 

  30. Weiner, O.D., Servant, G., Parent, C.A., Devreotes, P.N. & Bourne, H.R. in Cell Polarity (ed. Drubin, D. G.) 201–239 (Oxford University Press, Oxford, 2000).

    Google Scholar 

Download references

Acknowledgements

We thank J. Thorner for experimental advice, S. Avery for pSVA12 and 13, H. Dohlman for the Sst2 antibody and pGPA1G302S, I. Herskowitz for the HMLa HMRa strain, S. Reed and D. Stone for pGPA1G322E and R, C. Beh and J. Rine for the FUS1:GFP plasmid, J. Dohmen for pPW66R, and H. Nolla of the UC Berkeley Cancer Research Laboratory Flow Cytometry Facility for help with FACS. We thank C. Boone, H. Bourne, J. Rine, J. Thorner, M. Albers, K. Karbstein, K. Kozminski, G. Manning and the Drubin Laboratory for insightful discussions and comments on the manuscript. This work was supported by NIH grants GM20291 to D.E.S. and GM50399 to D.G.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Drubin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Table

Figure S1 Calibration of FACS data. (PDF 274 kb)

Supplementary table

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siekhaus, D., Drubin, D. Spontaneous receptor-independent heterotrimeric G-protein signalling in an RGS mutant. Nat Cell Biol 5, 231–235 (2003). https://doi.org/10.1038/ncb941

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb941

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing