Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microscopic analysis of polymerization dynamics with individual actin filaments

Abstract

The polymerization–depolymerization dynamics of actin is a key process in a variety of cellular functions. Many spectroscopic studies have been performed in solution, but studies on single actin filaments have just begun. Here, we show that the time course of polymerization of individual filaments consists of a polymerization phase and a subsequent steady-state phase. During the steady-state phase, a treadmilling process of elongation at the barbed end and shortening at the pointed end occurs, in which both components of the process proceed at approximately the same rate. The time correlation of length fluctuation of the filaments in the steady-state phase showed that the polymerization–depolymerization dynamics follow a diffusion (stochastic) process, which cannot be explained by simple association and dissociation of monomers at both ends of the filaments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescence micrographs of actin(Ca) polymerization.
Figure 2: Time course of actin(Ca) polymerization at various actin concentrations.
Figure 3: The effects of G-actin(Ca) concentration on filament growth during polymerization.
Figure 4: Frequency of actin(Ca) filament length fluctuation in a steady-state phase.
Figure 5: Analysis of the polymerization dynamics of actin(Mg).
Figure 6: Square of the width of the length fluctuation histogram versus correlation time.

Similar content being viewed by others

References

  1. Oosawa, F. & Kasai, M. Theory of linear and helical aggregations of macromolecules. J. Mol. Biol. 4, 12–15 (1962).

    Article  Google Scholar 

  2. Oosawa, F. & Asakura, S. Thermodynamics of the Polymerization of Proteins (Academic Press, New York, 1975).

    Google Scholar 

  3. Woodrum, D. T., Rich, S. A. & Pollard, T. D. Evidence for biased bidirectional polymerization of actin filaments using heavy meromyosin prepared by an improved method. J. Cell Biol. 67, 231–237 (1975).

    Article  CAS  Google Scholar 

  4. Kondo, H. & Ishiwata, S. Uni-directional growth of F-actin. J. Biochem. 79, 159–171 (1976).

    Article  CAS  Google Scholar 

  5. Hayashi, T. & Ip, W. Polymerization polarity of actin. J. Mechanochem. Cell Motil. 3, 163–169 (1976).

    CAS  PubMed  Google Scholar 

  6. Pollard, T. D. & Cooper, J. A. Actin and actin-binding proteins. A critical evaluation of mechanism and functions. Annu. Rev. Biochem. 55, 987–1035 (1986).

    Article  CAS  Google Scholar 

  7. Wegner, A. Head to tail polymerization of actin. J. Mol. Biol. 108, 139–150 (1976).

    Article  CAS  Google Scholar 

  8. Korn, E. D., Carlier, M.-F. & Pantaloni, D. Actin polymerization and ATP hydrolysis. Science 238, 638–644 (1987).

    Article  CAS  Google Scholar 

  9. Carlier, M.-F. Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules. Int. Rev. Cytol. 115, 139–170 (1989).

    Article  CAS  Google Scholar 

  10. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    Article  CAS  Google Scholar 

  11. Horio, T. & Hotani, H. Visualization of the dynamic instability of individual microtubles by dark-field microscopy. Nature 321, 605–607 (1986).

    Article  CAS  Google Scholar 

  12. Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Direct observation of motion of single actin filaments in the presence of myosin. Nature 307, 58–60 (1984).

    Article  CAS  Google Scholar 

  13. Honda, H., Nagashima, H. & Asakura, S. Directional movement of F-actin in vitro. J. Mol. Biol. 191, 131–133 (1986).

    Article  CAS  Google Scholar 

  14. Harada, Y., Sakurada, K., Aoki, T., Thomas, D. D. & Yanagida, T. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J. Mol. Biol. 216, 49–68 (1991).

    Article  Google Scholar 

  15. Huang, Z. J., Haugland, R. P., You, W. M. & Haugland, R. P. Phallotoxin and actin binding assay by fluorescence enhancement. Anal. Biochem. 200, 199–204 (1992).

    Article  CAS  Google Scholar 

  16. Ishiwata, S., Tadashige, J., Masui, I., Nishizaka, T. & Kinosita, K. Jr in Molecular Interactions of Actin (eds dos Remedios, C. G. & Thomas, D. D.) 79–94 (Springer-Verlag, Heidelberg, 2001).

    Book  Google Scholar 

  17. Amann, K. J. & Pollard, T. D. Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy. Proc. Natl Acad. Sci. USA 98, 15009–15013 (2001).

    Article  CAS  Google Scholar 

  18. Fujiwara, I., Suetsugu, S., Uemura, S., Takenawa, T. & Ishiwata, S. Visualization and force measurement of branching by Arp2/3 complex and N-WASP in actin filament. Biochem. Biophys. Res. Comm. 293, 1550–1555 (2002).

    Article  CAS  Google Scholar 

  19. De La Cruz, E. M. & Pollard, T. D. Kinetics and thermodynamics of phalloidin binding to actin filaments from three divergent species. Biochemistry 35, 14054–14061 (1994).

    Article  Google Scholar 

  20. Estes, J. E., Selden, L. A., Kinosian, H. J. & Gershman, L. C. Tightly-bound divalent cation of actin. J. Muscle Res. Cell Motil. 13, 272–284 (1992).

    Article  CAS  Google Scholar 

  21. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Inc., Massachusetts, 2001).

    Google Scholar 

  22. Murphy, D. B., Gray, R. O., Grasser, W. A. & Pollard, T. D. Direct demonstration of actin filament annealing in vitro. J. Cell Biol. 106, 1947–1954 (1988).

    Article  CAS  Google Scholar 

  23. Brenner, S. L. & Korn, E. D. On the mechanism of actin monomer–polymer subunit exchange at steady state. J. Biol. Chem. 258, 5013–5020 (1983).

    CAS  PubMed  Google Scholar 

  24. Spudich, J. A. & Watt, S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin–troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246, 4866–4871 (1971).

    CAS  PubMed  Google Scholar 

  25. Yasuda, R., Miyata, H. & Kinosita, K. Jr. Direct measurement of the torsional rigidity of single actin filaments. J. Mol. Biol. 263, 227–236 (1996).

    Article  CAS  Google Scholar 

  26. Kouyama, T. & Mihashi, K. Fluorimetry study of N-(1-pyrenyl) iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur. J. Biochem. 114, 33–38 (1981).

    Article  CAS  Google Scholar 

  27. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly supported by Grants-in-Aid for Scientific Research, Scientific Research on Priority Areas and Bio-venture Projects from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by Grants-in-Aid from the Japan Science and Technology Corporation (CREST) and the Mitsubishi Foundation. We thank W. Rozycki for reading the manuscript. We also thank colleagues at Waseda University and CREST for their encouragement and support. I.F. is a research fellow of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin'ichi Ishiwata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, I., Takahashi, S., Tadakuma, H. et al. Microscopic analysis of polymerization dynamics with individual actin filaments. Nat Cell Biol 4, 666–673 (2002). https://doi.org/10.1038/ncb841

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb841

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing