Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism

Abstract

Mitochondrial aconitase is sensitive to oxidative inactivation and can aggregate and accumulate in many age-related disorders. Here we report that Lon protease, an ATP-stimulated mitochondrial matrix protein, selectively recognizes and degrades the oxidized, hydrophobic form of aconitase after mild oxidative modification, but that severe oxidation results in aconitase aggregation, which makes it a poor substrate for Lon. Similarly, a morpholino oligodeoxynucleotide directed against the lon gene markedly decreases the amount of Lon protein, Lon activity and aconitase degradation in WI-38 VA-13 human lung fibroblasts and causes accumulation of oxidatively modified aconitase. The ATP-stimulated Lon protease may be an essential defence against the stress of life in an oxygen environment. By recognizing minor oxidative changes to protein structure and rapidly degrading the mildly modified protein, Lon protease may prevent extensive oxidation, aggregation and accumulation of aconitase, which could otherwise compromise mitochondrial function and cellular viability. Aconitase is probably only one of many mitochondrial matrix proteins that are preferentially degraded by Lon protease after oxidative modification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of aconitase activity and protein modification after H2O2 treatment.
Figure 2: Degradation of oxidatively-denatured aconitase during Incubation with bovine heart muscle mitochondrial extract.
Figure 3: Elution profile of Lon protease from size-exclusion chromatography and proteolytic activity of bovine heart mitochondrial matrix fractions.
Figure 4: Purification of mitochondrial Lon protease.
Figure 5: Purified Lon protease preferentially degrades oxidized aconitase.
Figure 6: Diminished ATP-stimulated degradation of aconitase in intact WI-38 VA-13 human fibroblasts after treatment with lon antisense oligonucleotides.
Figure 7: Aconitase protein quantity, activity and oxidative modification in WI-38 VA-13 human lung fibroblasts treated with lon antisense oligonucleotides.

Similar content being viewed by others

References

  1. Davies, K. J. Intracellular proteolytic systems may function as secondary antioxidant defenses: an hypothesis. Free Radic. Biol. Med. 2, 155–173 (1986).

    Article  CAS  Google Scholar 

  2. Berlett, B. S. & Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313–23136 (1997).

    Article  CAS  Google Scholar 

  3. Grune, T., Reinheckel, T. & Davies, K. J. Degradation of oxidized proteins in mammalian cells. FASEB J. 11, 526–534 (1997).

    Article  CAS  Google Scholar 

  4. Ullrich, O. et al. Poly ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc. Natl Acad. Sci. USA 96, 6223–6228 (1999).

    Article  CAS  Google Scholar 

  5. Sitte, N., Merker, K., Von Zglinicki, T., Davies, K. J. & Grune, T. Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part II—aging of nondividing cells. FASEB J. 14, 2503–2510 (2000).

    Article  CAS  Google Scholar 

  6. Grune, T., Shringarpure, R., Sitte, N. & Davies, K. Age-related changes in protein oxidation and proteolysis in mammalian cells. J. Gerontol. Ser. A 56, B459–B467 (2001).

    Article  CAS  Google Scholar 

  7. Rivett, A. J. Purification of a liver alkaline protease which degrades oxidatively modified glutamine synthetase. Characterization as a high molecular weight cysteine proteinase. J. Biol. Chem. 260, 12600–12606 (1985).

    CAS  PubMed  Google Scholar 

  8. Levine, R. L., Oliver, C. N., Fulks, R. M. & Stadtman, E. R. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis. Proc. Natl Acad. Sci. USA 78, 2120–2124 (1981).

    Article  CAS  Google Scholar 

  9. Davies, K. J. & Lin, S. W. Oxidatively denatured proteins are degraded by an ATP-independent proteolytic pathway in Escherichia coli. Free Radic. Biol. Med. 5, 225–236 (1988).

    Article  CAS  Google Scholar 

  10. Marcillat, O., Zhang, Y., Lin, S. W. & Davies, K. J. Mitochondria contain a proteolytic system which can recognize and degrade oxidatively denatured proteins. Biochem. J. 254, 677–683 (1988).

    Article  CAS  Google Scholar 

  11. Dean, R. T. & Pollak, J. K. Endogenous free radical generation may influence proteolysis in mitochondria. Biochem. Biophys. Res. Comm. 126, 1082–1089 (1985).

    Article  CAS  Google Scholar 

  12. Chance, B., Sies, H. & Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–605 (1979).

    Article  CAS  Google Scholar 

  13. Davies, K. J. & Doroshow, J. H. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J. Biol. Chem. 261, 3060–3067 (1986).

    CAS  PubMed  Google Scholar 

  14. Zhang, Y., Marcillat, O., Giulivi, C., Ernster, L. & Davies, K. J. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J. Biol. Chem. 265, 16330–16336 (1990).

    CAS  PubMed  Google Scholar 

  15. Doroshow, J. H. & Davies, K. J. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J. Biol. Chem. 261, 3068–3074 (1986).

    CAS  PubMed  Google Scholar 

  16. Cadenas, E. & Davies, K. J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29, 222–230 (2000).

    Article  CAS  Google Scholar 

  17. Marcillat, O., Zhang, Y. & Davies, K. J. Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. Biochem. J. 259, 181–189 (1989).

    Article  CAS  Google Scholar 

  18. Sohal, R. S. & Dubey, A. Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radic. Biol. Med. 16, 621–626 (1994).

    Article  CAS  Google Scholar 

  19. Yan, L. J. & Sohal, R. S. Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc. 95, 12896–12901 (1998).

    CAS  Google Scholar 

  20. Bota, D. A. & Davies, K. J. A. Protein degradation in mitochondria: implications for oxidative stress, aging and disease: a novel etiological classification of mitochondrial proteolytic disorders. Mitochondrion 1, 33–49 (2001).

    Article  CAS  Google Scholar 

  21. Wang, N., Gottesman, S., Willingham, M. C., Gottesman, M. M. & Maurizi, M. R. A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc. 90, 11247–11251 (1993).

    CAS  Google Scholar 

  22. Desautels, M. & Goldberg, A. L. Demonstration of an ATP-dependent, vanadate-sensitive endoprotease in the matrix of rat liver mitochondria. J. Biol. Chem. 257, 11673–11679 (1982).

    CAS  PubMed  Google Scholar 

  23. Desautels, M. & Goldberg, A. L. Liver mitochondria contain an ATP-dependent, vanadate-sensitive pathway for the degradation of proteins. Proc. Natl Acad. Sci. USA 79, 1869–1873 (1982).

    Article  CAS  Google Scholar 

  24. Rapoport, S., Dubiel, W. & Muller, M. Characteristics of an ATP-dependent proteolytic system of rat liver mitochondria. FEBS Lett. 147, 93–96 (1982).

    Article  CAS  Google Scholar 

  25. Watabe, S. & Kimura, T. ATP-dependent protease in bovine adrenal cortex. Tissue specificity, subcellular localization, and partial characterization. J. Biol. Chem. 260, 5511–5517 (1985).

    CAS  PubMed  Google Scholar 

  26. Watabe, S. & Kimura, T. Adrenal cortex mitochondrial enzyme with ATP-dependent protease and protein-dependent ATPase activities. Purification and properties. J. Biol. Chem. 260, 14498–14504 (1985).

    CAS  PubMed  Google Scholar 

  27. Amerik, A. et al. Cloning and sequence analysis of cDNA for a human homolog of eubacterial ATP-dependent Lon proteases. FEBS Lett. 340, 25–28 (1994).

    Article  CAS  Google Scholar 

  28. Suzuki, C. K., Suda, K., Wang, N. & Schatz, G. Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 264, 273–276 (1994); erratum ibid. 264, 891 (1994).

    Article  CAS  Google Scholar 

  29. van Dyck, L., Neupert, W. & Langer, T. The ATP-dependent PIM1 protease is required for the expression of intron-containing genes in mitochondria. Genes Dev. 12, 1515–1524 (1998).

    Article  CAS  Google Scholar 

  30. Van Dyck, L., Pearce, D. A. & Sherman, F. PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 269, 238–242 (1994).

    CAS  PubMed  Google Scholar 

  31. Gardner, P. R., Nguyen, D. D. & White, C. W. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc. Natl Acad. Sci. USA 91, 12248–12252 (1994).

    Article  CAS  Google Scholar 

  32. Grune, T. et al. Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J. Biol. Chem. 273, 10857–10862 (1998).

    Article  CAS  Google Scholar 

  33. Giulivi, C., Pacifici, R. E. & Davies, K. J. Exposure of hydrophobic moieties promotes the selective degradation of hydrogen peroxide-modified hemoglobin by the multicatalytic proteinase complex, proteasome. Arch. Biochem. Biophys. 311, 329–341 (1994).

    Article  CAS  Google Scholar 

  34. Davies, K. J., Lin, S. W. & Pacifici, R. E. Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J. Biol. Chem. 262, 9914–9920 (1987).

    CAS  PubMed  Google Scholar 

  35. Ostrowska, H., Wojcik, C., Omura, S. & Worowski, K. Lactacystin, a specific inhibitor of the proteasome, inhibits human platelet lysosomal cathepsin A-like enzyme. Biochem. Biophys. Res. Comm. 234, 729–732 (1997).

    Article  CAS  Google Scholar 

  36. Kuzela, S. & Goldberg, A. L. Mitochondrial ATP-dependent protease from rat liver and yeast. Methods Enzymol. 244, 376–383 (1994).

    Article  CAS  Google Scholar 

  37. Gardner, P. R. Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem. 266, 19328–19333 (1991).

    CAS  PubMed  Google Scholar 

  38. Gardner, P. R., Raineri, I., Epstein, L. B. & White, C. W. Superoxide radical and iron modulate aconitase activity in mammalian cells. J. Biol. Chem. 270, 13399–13405 (1995).

    Article  CAS  Google Scholar 

  39. Kennedy, M. C. An EPR investigation of the products of the reaction of cytosolic and mitochondrial aconitases with nitric oxide. J. Biol. Chem. 272, 20340–20347 (1997).

    Article  CAS  Google Scholar 

  40. Yan, L. J., Levine, R. L. & Sohal, R. S. Oxidative damage during aging targets mitochondrial aconitase. Proc. Natl Acad. Sci. USA 94, 11168–11172 (1997); erratum ibid. 95, 1968 (1998).

    Article  CAS  Google Scholar 

  41. Williams, M. D. Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J. Biol. Chem. 273, 28510–28515 (1998).

    Article  CAS  Google Scholar 

  42. Lass, A. Caloric restriction prevents age-associated accrual of oxidative damage to mouse skeletal muscle mitochondria. Free Radic. Biol. Med. 25, 1089–1097 (1998).

    Article  CAS  Google Scholar 

  43. Das, N. Selectivity of protein oxidative damage during aging in Drosophila melanogaster. Biochem. J. 360, 209–216 (2001).

    Article  CAS  Google Scholar 

  44. Park, L. C. Mitochondrial impairment in the cerebellum of the patients with progressive supranuclear palsy. J. Neurosci. Res. 66, 1028–1034 (2001).

    Article  CAS  Google Scholar 

  45. Bradley, J. L. Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia. Human Mol. Genet. 9, 275–282 (2000).

    Article  CAS  Google Scholar 

  46. Tabrizi, S. J. Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann. Neurol. 45, 25–32 (1999).

    Article  CAS  Google Scholar 

  47. Lee, C. K., Klopp, R. G., Weindruch, R. & Prolla, T. A. Gene expression profile of aging and its retardation by caloric restriction. Science 285, 1390–1393 (1999).

    Article  CAS  Google Scholar 

  48. Jentoft, N. & Dearborn, D. G. Labeling of proteins by reductive methylation using sodium cyanoborohydride. J. Biol. Chem. 254, 4359–4365 (1979).

    CAS  PubMed  Google Scholar 

  49. Azzone, G. F., Colonna, R. & Ziche, B. Preparation of bovine heart mitochondria in high yield. Methods Enzymol. 55, 46–50 (1979).

    Article  CAS  Google Scholar 

  50. Trounce, I. A., Kim, Y. L., Jun, A. S. & Wallace, D. C. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 264, 484–509 (1996).

    Article  CAS  Google Scholar 

  51. Hausladen, A. & Fridovich, I. Measuring nitric oxide and superoxide: rate constants for aconitase reactivity. Methods Enzymol. 269, 37–41 (1996).

    Article  CAS  Google Scholar 

  52. Summerton, J. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7, 187–195 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NIH/NIEHS grant no. ES03598 and by NIH/NIA grant no. AG16256 to K.J.A.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin J. A. Davies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bota, D., Davies, K. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4, 674–680 (2002). https://doi.org/10.1038/ncb836

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing