Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Akt inhibits Myt1 in the signalling pathway that leads to meiotic G2/M-phase transition

Abstract

In eukaryotes, entry into M-phase of the cell cycle is induced by activation of cyclin B–Cdc2 kinase. At G2-phase, the activity of its inactivator, a member of the Wee1 family of protein kinases, exceeds that of its activator, Cdc25C phosphatase. However, at M-phase entry the situation is reversed, such that the activity of Cdc25C exceeds that of the Wee1 family. The mechanism of this reversal is unclear. Here we show that in oocytes from the starfish Asterina pectinifera, the kinase Akt (or protein kinase B (PKB)) phosphorylates and downregulates Myt1, a member of the Wee1 family. This switches the balance of regulator activities and causes the initial activation of cyclin B–Cdc2 at the meiotic G2/M-phase transition. These findings identify Myt1 as a new target of Akt, and demonstrate that Akt functions as an M-phase initiator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myt1 is downregulated at meiotic G2/M-phase transition in the absence of cyclin B–Cdc2 activation.
Figure 2: Myt1 inactivation occurs before p90rsk activation at the meiotic G2/M-phase transition.
Figure 3: Akt activation is necessary and sufficient to induce meiotic G2/M-phase transition.
Figure 4: Phosphorylation of Myt1 at Ser 75 by Akt is required for meiotic G2/M-phase transition.
Figure 5: Myt1 is downregulated directly by Akt.
Figure 6: A model for the initiation of the meiotic G2/M-phase transition in Asterina oocytes.

Similar content being viewed by others

References

  1. Nurse, P. Universal control mechanism regulating onset of M-phase. Nature 344, 503–508 (1990).

    Article  CAS  Google Scholar 

  2. Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nature Rev. Mol. Cell Biol. 2, 21–32 (2001).

    Article  CAS  Google Scholar 

  3. Coleman, T. R. & Dunphy, W. G. Cdc2 regulatory factors. Curr. Opin. Cell Biol. 6, 877–882 (1994).

    Article  CAS  Google Scholar 

  4. Lew, D. J. & Kornbluth, S. Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr. Opin. Cell Biol. 8, 795–804 (1996).

    Article  CAS  Google Scholar 

  5. Sagata, N. Meiotic metaphase arrest in animal oocytes: its mechanisms and biological significance. Trends Cell Biol. 6, 22–28 (1996).

    Article  CAS  Google Scholar 

  6. Jaffe, L. A., Gallo, C. J., Lee, R. H., Ho, Y.-K. & Jones, T. L. Z. Oocyte maturation in starfish is mediated by the βγ-subunit complex of a G-protein. J. Cell Biol. 121, 775–783 (1993).

    Article  CAS  Google Scholar 

  7. Sadler, K. C. & Ruderman, J. V. Components of the signaling pathway linking the 1-methyladenine receptor to MPF activation and maturation in starfish oocytes. Dev. Biol. 197, 25–38 (1998).

    Article  CAS  Google Scholar 

  8. Kishimoto, T. Cell cycle arrest and release in starfish oocytes and eggs. Seminars Cell Dev. Biol. 9, 549–557 (1998).

    Article  CAS  Google Scholar 

  9. Kishimoto, T. Activation of MPF at meiosis reinitiation in starfish oocytes. Dev. Biol. 214, 1–8 (1999).

    Article  CAS  Google Scholar 

  10. Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  Google Scholar 

  11. Vanhaesebroeck, B. & Alessi, D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Scheid, M. P. & Woodgett, J. R. PKB/AKT: Functional insights from genetic models. Nature Rev. Mol. Cell Biol. 2, 760–768, (2001).

    Article  CAS  Google Scholar 

  13. Mueller, P. R., Coleman, T. R., Kumagai, A. & Dunphy, W. G. Myt1: a membrane-associated inhibitory kinase that phosphorylates cdc2 on both threonine-14 and tyrosine-15. Science 270, 86–90 (1995).

    Article  CAS  Google Scholar 

  14. Okano-Uchida, T. et al. In vivo regulation of cyclin A/Cdc2 and cyclin B/Cdc2 through meiotic and early cleavage cycles in starfish. Dev. Biol. 197, 39–53 (1998).

    Article  CAS  Google Scholar 

  15. Kanatani, H., Shirai, H., Nakanishi, K. & Kurokawa, T. Isolation and identification of meiosis inducing substance in starfish. Nature 221, 273–274 (1969).

    Article  CAS  Google Scholar 

  16. Picard, A., Labbe, J. C., Barakat, H., Cavadore, J. C. & Doree, M. Okadaic acid mimics a nuclear component required for cyclin B-cdc2 kinase microinjection to drive starfish oocytes into M phase. J. Cell Biol. 115, 337–344 (1991).

    Article  CAS  Google Scholar 

  17. Okumura, E., Sekiai, T., Hisanaga, S., Tachibana, K. & Kishimoto, T. Initial triggering of M-phase in starfish oocytes: a possible novel component of maturation-promoting factor besides cdc2 kinase. J. Cell Biol. 132, 125–135 (1996).

    Article  CAS  Google Scholar 

  18. Nakajo, N. et al. Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes. Genes Dev. 14, 328–338 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumagai, A. & Dunphy, W. G. Purification and molecular cloning of plx1, a cdc25-regulatory kinase from Xenopus egg extracts. Science 274, 1377–1380 (1996).

    Article  Google Scholar 

  20. Qian, Y.-W., Erikson, E., Li, C. & Maller, J. L. Activated polo-like kinase Plx1 is required at multiple points during mitosis in Xenopus laevis. Mol. Cell. Biol. 18, 4262–4271 (1998).

    Article  CAS  Google Scholar 

  21. Glover, D. M., Hagan, I. M. & Tavares, A. A. M. Polo-like kinases: a team that plays throughout mitosis. Genes Dev. 12, 3777–3787 (1998).

    Article  CAS  Google Scholar 

  22. Nigg, E. A. Polo-like kinases: positive regulators of cell division from start to finish. Curr. Opin. Cell Biol. 10, 776–783 (1998).

    Article  CAS  Google Scholar 

  23. Qian, Y.-W., Erikson, E., Taieb, F. E. & Maller, J. L. The polo-like kinase Plx1 is required for activation of the phosphatase Cdc25C and cyclin B-Cdc2 in Xenopus oocytes. Mol. Biol. Cell 12, 1791–1799 (2001).

    Article  CAS  Google Scholar 

  24. Palmer, A., Gavin, A. C. & Nebreda, A. R. A link between MAP kinase and p34cdc2/cyclin B during oocyte maturation: p90rsk phosphorylates and inactivates the p34cdc2 inhibitory kinase myt1. EMBO J. 17, 5037–5047 (1998).

    Article  CAS  Google Scholar 

  25. Nebreda, A. R. & Gavin, A. C. Cell survival demands some Rsk. Science 286, 1309–1310 (1999).

    Article  CAS  Google Scholar 

  26. Tachibana, K., Machida, T., Nomura, Y. & Kishimoto, T. MAP kinase links the fertilization signal transduction pathway to the G1/S-phase transition in starfish eggs. EMBO J. 16, 4333–4339 (1997).

    Article  CAS  Google Scholar 

  27. Tachibana, K., Tanaka, D., Isobe, T. & Kishimoto, T. c-Mos forces the mitotic cell cycle to undergo meiosis II to produce haploid gametes. Proc. Natl Acad. Sci. USA 97, 14301–14306 (2000).

    Article  CAS  Google Scholar 

  28. Andersen, C. B., Roth, R. A. & Conti, M. Protein kinase B/Akt induces resumption of meiosis in Xenopus oocytes. J. Biol. Chem. 273, 18705–18708 (1998).

    Article  CAS  Google Scholar 

  29. Zhou, B. P. et al. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biol. 3, 245–252 (2001).

    Article  CAS  Google Scholar 

  30. Leighton, I. A., Dalby, K. N., Caudwell, F. B., Cohen, P. T. W. & Cohen, P. Comparison of the specificities of p70 S6 kinase and MAPKAP kinase-1 identifies a relatively specific substrate for p70 S6 kinase: the N-terminal kinase domain of MAPKAP kinase-1 is essential for peptide phosphorylation. FEBS Lett. 375, 289–293 (1995).

    Article  CAS  Google Scholar 

  31. Fisher, D. L., Brassac, T., Galas, S. & Doree, M. Dissociation of MAP kinase activation and MPF activation in hormone-stimulated maturation of Xenopus oocytes. Development 126, 4537–4546 (1999).

    CAS  PubMed  Google Scholar 

  32. Gross, S. D. et al. The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90Rsk. Curr. Biol. 10, 430–438 (2000).

    Article  CAS  Google Scholar 

  33. Posner, B. I. et al. Peroxovanadium compounds: A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J. Biol. Chem. 269, 4596–4604 (1994).

    CAS  PubMed  Google Scholar 

  34. Lemaire, P., Garrett, N. & Gurdon, J. B. Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81, 85–94 (1995).

    Article  CAS  Google Scholar 

  35. Kishimoto, T. Microinjection and cytoplasmic transfer in starfish oocytes. Methods Cell Biol. 27, 379–394 (1986).

    Article  CAS  Google Scholar 

  36. Boyle, W. J., van der Geer, P. & Hunter, T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201, 110–149 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Ohsumi, S. Hisanaga and T. Saito for suggestions, L. A. Jaffe and M. Terasaki for critical reading of the manuscript and particularly Y. Kaziro of Shelling-Plau Laboratory of Molecular Medical Science for initiating this study. This work was supported by grants from the Ministry of Education, Science and Culture, Japan, the Human Frontier Science Program, and the Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation to T.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Kishimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okumura, E., Fukuhara, T., Yoshida, H. et al. Akt inhibits Myt1 in the signalling pathway that leads to meiotic G2/M-phase transition. Nat Cell Biol 4, 111–116 (2002). https://doi.org/10.1038/ncb741

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing