Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The exocyst complex binds the small GTPase RalA to mediate filopodia formation

Abstract

The Ras-related small GTPase RalA is involved in controlling actin cytoskeletal remodelling and vesicle transport in mammalian cells1,2. We identified the mammalian homologue of Sec5, a subunit of the exocyst complex determining yeast cell polarity, as a specific binding partner for GTP-ligated RalA. Inhibition of RalA binding to Sec5 prevents filopod production by tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) and by activated forms of RalA and Cdc42, signalling intermediates downstream of these inflammatory cytokines. We propose that the RalA–exocyst complex interaction integrates the secretory and cytoskeletal pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of RalA binding proteins.
Figure 2: Binding of Sec5 to RalA.
Figure 3: Involvement of Sec5 in filopodia formation induced by RalA and TNF-α.

Similar content being viewed by others

References

  1. Feig, L. A., Urano, T. & Cantor, S. Trends Biochem. Sci. 21, 438–441 (1996).

    Article  CAS  Google Scholar 

  2. Bos, J. L. EMBO J. 17, 6776–6782 (1998).

    Article  CAS  Google Scholar 

  3. Cantor, S. B., Urano, T. & Feig, L. A. Mol. Cell. Biol. 15, 4578–4584 (1995).

    Article  CAS  Google Scholar 

  4. Parks, S. H. & Weinberg, R. A. Oncogene 11, 2349–2355 (1995).

    Google Scholar 

  5. Jullien-Flores, V. et al. J. Biol. Chem. 270, 22473–22477 (1995).

    Article  CAS  Google Scholar 

  6. Nakashima, S. et al. EMBO J. 18, 3629–3642 (1999).

    Article  CAS  Google Scholar 

  7. Yamaguchi, A., Urano, T., Goi, T. & Feig, L. A. J. Biol. Chem. 272, 31230–31234 (1997).

    Article  CAS  Google Scholar 

  8. Ohta, Y., Suzuki, N., Nakamura, S., Hartwig, J. H. & Stossel, T. P. Proc. Natl Acad. Sci. USA 96, 2122–2128 (1999).

    Article  CAS  Google Scholar 

  9. Jiang, H. et al. Nature 378, 409–412 (1995).

    Article  CAS  Google Scholar 

  10. Luo, J.-Q. et al. Proc. Natl Acad. Sci. USA 95, 3632–3637 (1998).

    Article  CAS  Google Scholar 

  11. Brymora, A., Valova, V. A., Larsen, M. R., Roufogalis, B. D. & Robinson, P. J. J. Biol. Chem. 276, 29792–29797 (2001).

    Article  CAS  Google Scholar 

  12. Kee, Y. et al. Proc. Natl Acad. Sci. USA 94, 14438–14443 (1997).

    Article  CAS  Google Scholar 

  13. Bork, P., Doerks, T., Springer, T. A. & Snel, B. Trends Biochem. Sci. 24, 261–263 (1999).

    Article  CAS  Google Scholar 

  14. Andreev, J. et al. Mol. Cell. Biol. 19, 2338–2350 (1999).

    Article  CAS  Google Scholar 

  15. Vaidyanathan, V. V., Puri, N. & Roche, P. A. J. Biol. Chem. 276, 25101–25106 (2001).

    Article  CAS  Google Scholar 

  16. Puls, A. et al. J. Cell Sci. 112, 2983–2992 (1999).

    CAS  PubMed  Google Scholar 

  17. TerBush, D. R. & Novick, P. J. Cell Biol. 130, 299–312 (1995).

    Article  CAS  Google Scholar 

  18. TerBush, D., Maurice, T., Roth, D. & Novick, P. EMBO J. 15, 6483–6494 (1996).

    Article  CAS  Google Scholar 

  19. Finger, F. P. & Novick, P. J. Cell Biol. 142, 609–612 (1998).

    Article  CAS  Google Scholar 

  20. Guo, W., Grant, A. & Novick, P. J. Biol. Chem. 274, 23558–23564 (1999).

    Article  CAS  Google Scholar 

  21. Robinson, N. G. G. et al. Mol. Cell. Biol. 19, 3580–3587 (1999).

    Article  CAS  Google Scholar 

  22. Adamo, J., Rossi, G. & Brennwald, P. Mol. Biol. Cell 10, 4121–4133 (1999).

    Article  CAS  Google Scholar 

  23. Guo, W., Tamanoi, F. & Novick, P. Nature Cell Biol. 3, 353–360 (2001).

    Article  CAS  Google Scholar 

  24. Abo, A. et al. EMBO J. 22, 6527–6540 (1998).

    Article  Google Scholar 

  25. Erickson, J. W., Zhang, C., Kahn, R. A., Evans, T. & Cerione, R. A. J. Biol. Chem. 271, 26850–26854 (1996).

    Article  CAS  Google Scholar 

  26. Bretscher, M. S. Cell 87, 601–606 (1996).

    Article  CAS  Google Scholar 

  27. Drubin, D. G. & Nelson, J. Cell 84, 335–344 (1996).

    Article  CAS  Google Scholar 

  28. Polakis, P. G. et al. J. Biol. Chem. 264, 16383–16389 (1989).

    CAS  PubMed  Google Scholar 

  29. Iwamatsu, A. & Yoshida-Kubomura, N. J. Biochem. 120, 29–34 (1996).

    Article  CAS  Google Scholar 

  30. Orci, L. et al. Cell 64, 1183–1195 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Stossel and J. Hartwig for critical reading of the manuscript. This work was supported by Grant HL19429 from the United States Public Health Service and by the Edwin S. Webster Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutaka Ohta.

Supplementary information

Supplementary Figures and Tables

Table S1 MALDI-TOF/MS analysis of p85, p108, and p110 peptides. (PDF 300 kb)

Figure S1 Mapping of the RalA binding domain of Sec5.

Figure S2 Specificity of the anti-Sec5 antibody

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugihara, K., Asano, S., Tanaka, K. et al. The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat Cell Biol 4, 73–78 (2002). https://doi.org/10.1038/ncb720

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb720

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing