Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Direct, high-resolution measurement of furrow stiffening during division of adherent cells

Abstract

It is unclear whether cell division is driven by cortical relaxation outside the equatorial region or cortical contractility within the developing furrow alone. To approach this question, a technique is required that can monitor spatially-resolved changes in cortical stiffness with good time resolution. We employed atomic force microscopy (AFM), in force-mapping mode, to track dynamic changes in the stiffness of the cortex of adherent cultured cells along a single scan-line during M phase, from metaphase to cytokinesis. Video microscopy, which we used to correlate the AFM data with mitotic events identified by light microscopy, indicated that the AFM force-mapping technique does not perturb dividing cells. Here we show that cortical stiffening occurs over the equatorial region about 160 seconds before any furrow appears, and that this stiffening markedly increases as the furrow starts. By contrast, polar relaxation of cells does not seem to be an obligatory event for cell division to occur.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Paired, single height and elasticity profiles of a PtK2 cell during M phase.
Figure 2: An AFM contact-mode image of conjoined NRK daughter cells.
Figure 3: Time evolution of height (red) and elasticity (blue) of one point in the equatorial region of a dividing PtK1 cell.
Figure 4: Sequence of pole-to-pole height profiles over the central region of a dividing PtK2 cell.

Similar content being viewed by others

References

  1. Glotzer, M. Curr. Opin. Cell Biol. 9, 815–823 (1997).

    Article  CAS  Google Scholar 

  2. Robinson, D. N. & Spudich, J. A. Trends Cell Biol. 10, 228–237 (2000).

    Article  CAS  Google Scholar 

  3. Wolf, W. A., Chew, T.-L. & Chisholm, R. L. Cell. Mol. Life Sci. 55, 108–120 (1999).

    Article  CAS  Google Scholar 

  4. Rappaport, R. Intl Rev. Cytol. 31, 169–213 (1971).

    Article  CAS  Google Scholar 

  5. Wolpert, L. Intl Rev. Cytol. 10, 163–216 (1960).

    Google Scholar 

  6. White, J. G. & Borisy, G. G. J. Theor. Biol. 101, 289–316 (1983).

    Article  CAS  Google Scholar 

  7. Harris, A. K. NATO ASI Series H 84, 37–66 (1994).

    Google Scholar 

  8. Binnig, G., Quate, C. F. & Gerber, C. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  9. Radmacher, M., Cleveland, J. P., Fritz, M., Hansma, H. G. & Hansma, P. K. Biophys. J. 66, 2159–2165 (1994).

    Article  CAS  Google Scholar 

  10. Radmacher, M. IEEE Eng. Med. Biol. 16, 47–57 (1997).

    Article  CAS  Google Scholar 

  11. Rotsch, C., Jacobson, K. & Radmacher, M. Proc. Natl Acad. Sci. USA 96, 921–926 (1999).

    Article  CAS  Google Scholar 

  12. Dvorak, J. A. & Nagao, E. Exp. Cell Res. 242, 69–74 (1998).

    Article  CAS  Google Scholar 

  13. Fishkind, D. J. & Wang, Y.-l. J. Cell Biol. 123, 837–848 (1993).

    Article  CAS  Google Scholar 

  14. Cao, L.-g. & Wang, Y.-l. J. Cell Biol. 111, 1905–1911 (1990).

    Article  CAS  Google Scholar 

  15. Sanger, J. M. & Sanger, J. W. Microscopy Res. Techn. 49, 190–201 (2000).

    Article  CAS  Google Scholar 

  16. Fishkind, D. J. & Wang, Y.-l. Curr. Opin. Cell Biol. 7, 23–31 (1995).

    Article  CAS  Google Scholar 

  17. Cao, L.-g. & Wang, Y.-l. Mol. Biol. Cell 7, 225–232 (1996).

    Article  CAS  Google Scholar 

  18. Burton, K. & Taylor, L. Nature 385, 450–454 (1997).

    Article  CAS  Google Scholar 

  19. Butt, H.-J. & Jaschke, M. Nanotechnology 6, 1–7 (1995).

    Article  Google Scholar 

  20. Domke, J. et al. Colloids and Surfaces B: Biointerfaces 19, 367–379 (2000).

    Article  CAS  Google Scholar 

  21. Domke, J. & Radmacher, M. Langmuir 14, 3320–3325 (1998).

    Article  CAS  Google Scholar 

  22. Radmacher, M., Fritz, M., Kacher, C. M., Cleveland, J. P. & Hansma, P. K. Biophys. J. 70, 556–567 (1996).

    Article  CAS  Google Scholar 

  23. Sneddon, I. N. Int. J. Eng. Sci. 3, 47–57 (1965).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Canman, A. Harris and T. Salmon (University of North Carolina, Chapel Hill), Y. Wang (University of Massachusetts), and J. White (University of Wisconsin) for advice. We also thank B. Bement (University of Wisconsin-Madison) and D. Fishkind (University of Notre Dame) for criticism. We thank S. Bolz and T. Gloe (Ludwig-Maximilians University) for help with confocal microscopy and A. Kardinal for technical assistance. K.J. also thanks H. Gaub (Ludwig-Maximilians University) for hospitality. This work was partially supported by an NIH grant (to K.J.) and by the Deutsche Forschungs-meinscraft (to R.M. and M.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Jacobson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matzke, R., Jacobson, K. & Radmacher, M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat Cell Biol 3, 607–610 (2001). https://doi.org/10.1038/35078583

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078583

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing