Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

FBXW5 controls centrosome number

Regulatory mechanisms to prevent centriole overduplication during the cell cycle are not completely understood. In this issue, FBXW5 is shown to control the degradation of the centriole assembly factor HsSAS-6. Moreover, the study proposes that FBXW5 is a substrate of both PLK4 and APC/C, two established regulators of centriole duplication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Positive regulators of centriole duplication are regulated by degradation.

References

  1. Nigg, E. A. Trends Cell Biol. 17, 215–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Tsou, M. F. & Stearns, T. Nature 442, 947–951 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Habedanck, R., Stierhof, Y. D., Wilkinson, C. J. & Nigg, E. A. Nat. Cell Biol. 7, 1140–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Kleylein-Sohn, J. et al. Dev. Cell 13, 190–202 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Leidel, S., Delattre, M., Cerutti, L., Baumer, K. & Gonczy, P. Nat. Cell Biol. 7, 115–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Kitagawa, D. et al. Cell 144, 364–375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Breugel, M. et al. Science 331, 1196–1199 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Strnad, P. et al. Dev. Cell 13, 203–213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Freed, E. et al. Genes Dev. 13, 2242–2257 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Piva, R. et al. Mol. Cell Biol. 22, 8375–8387 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D'Angiolella, V. et al. Nature 466, 138–142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guderian, G., Westendorf, J., Uldschmid, A. & Nigg, E. A. J. Cell Sci. 123, 2163–2169 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Guardavaccaro, D. et al. Dev. Cell 4, 799–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Puklowski, A. et al. Nat. Cell Biol. 13, 1004–1009 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Kitagawa, D., Busso, C., Fluckiger, I. & Gonczy, P. Dev. Cell 17, 900–907 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Hatch, E. M., Kulukian, A., Holland, A. J., Cleveland, D. W. & Stearns, T. J. Cell Biol. 191, 721–729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu, J. et al. Genes Dev. 22, 866–871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Pagano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagan, J., Pagano, M. FBXW5 controls centrosome number. Nat Cell Biol 13, 888–890 (2011). https://doi.org/10.1038/ncb2312

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing