Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

How APC/C–Cdc20 changes its substrate specificity in mitosis

Subjects

A Corrigendum to this article was published on 03 May 2011

This article has been updated

Abstract

Progress through mitosis requires that the right protein be degraded at the right time. One ubiquitin ligase, the anaphase-promoting complex or cyclosome (APC/C) targets most of the crucial mitotic regulators by changing its substrate specificity throughout mitosis. The spindle assembly checkpoint (SAC) acts on the APC/C co-activator, Cdc20 (cell division cycle 20), to block the degradation of metaphase substrates (for example, cyclin B1 and securin), but not others (for example, cyclin A). How this is achieved is unclear. Here we show that Cdc20 binds to different sites on the APC/C depending on the SAC. Cdc20 requires APC3 and APC8 to bind and activate the APC/C when the SAC is satisfied, but requires only APC8 to bind the APC/C when the SAC is active. Moreover, APC10 is crucial for the destruction of cyclin B1 and securin, but not cyclin A. We conclude that the SAC causes Cdc20 to bind to different sites on the APC/C and this alters APC/C substrate specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: APC11 is required to degrade all model substrates.
Figure 2: APC3 is required to degrade both SAC-sensitive and SAC-insensitive substrates.
Figure 3: APC3 is required to bind Cdc20 only when the SAC is satisfied.
Figure 4: APC10 is required to recruit SAC-sensitive substrates.
Figure 5: A point mutation in APC8 is sufficient to reduce the binding of Cdc20 in prometaphase.
Figure 6: A point mutation in APC8 prevents cyclin A degradation in prometaphase.
Figure 7: The Cdc20-binding site on APC8 is also required in metaphase.

Similar content being viewed by others

Change history

  • 31 March 2011

    In the version of this article initially published online and in print, there were some data errors in table 1. These errors have been corrected in the HTML and PDF versions of the article.

References

  1. Pines, J. Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol. 16, 55–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol. 7, 644–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Thornton, B. R. et al. An architectural map of the anaphase-promoting complex. Genes Dev. 20, 449–460 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gmachl, M., Gieffers, C., Podtelejnikov, A. V., Mann, M. & Peters, J. M. The RING-H2 finger protein APC11 and the E2 enzyme UBC4 are sufficient to ubiquitinate substrates of the anaphase-promoting complex. Proc. Natl Acad. Sci. USA 97, 8973–8978 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang, Z. et al. APC2 Cullin protein and APC11 RING protein comprise the minimal ubiquitin ligase module of the anaphase-promoting complex. Mol. Biol. Cell 12, 3839–3851 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwab, M., Neutzner, M., Mocker, D. & Seufert, W. Yeast Hct1 recognizes the mitotic cyclin Clb2 and other substrates of the ubiquitin ligase APC. EMBO J. 20, 5165–5175 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sorensen, C. S. et al. A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex–Cdh1 and cyclin A–Cdk2 during cell cycle progression. Mol. Cell. Biol. 21, 3692–3703 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burton, J. L. & Solomon, M. J. Hsl1p, a swe1p inhibitor, is degraded via the anaphase-promoting complex. Mol. Cell. Biol. 20, 4614–4625 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kraft, C., Vodermaier, H. C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J. M. The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol. Cell 18, 543–553 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Hilioti, Z., Chung, Y., Mochizuki, Y., Hardy, C. F. & Cohen-Fix, O. The anaphase inhibitor Pds1 binds to the APC/C-associated protein Cdc20 in a destruction box-dependent manner. Curr. Biol. 11, 1347–1352 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Pfleger, C. M., Lee, E. & Kirschner, M. W. Substrate recognition by the Cdc20 and Cdh1 components of the anaphase-promoting complex. Genes Dev. 15, 2396–2407 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mallory, M. J., Cooper, K. F. & Strich, R. Meiosis-specific destruction of the Ume6p repressor by the Cdc20-directed APC/C. Mol. Cell 27, 951–961 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kimata, Y. et al. A mutual inhibition between APC/C and its substrate Mes1 required for meiotic progression in fission yeast. Dev. Cell 14, 446–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Eytan, E., Moshe, Y., Braunstein, I. & Hershko, A. Roles of the anaphase-promoting complex/cyclosome and of its activator Cdc20 in functional substrate binding. Proc. Natl Acad. Sci. USA 103, 2081–2086 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Passmore, L. A. & Barford, D. Coactivator functions in a stoichiometric complex with anaphase-promoting complex/cyclosome to mediate substrate recognition. EMBO Rep. 6, 873–878 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sullivan, M. & Morgan, D. O. Finishing mitosis, one step at a time. Nat. Rev. Mol. Cell Biol. 8, 894–903 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Pfleger, C. M. & Kirschner, M. W. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 14, 655–665 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Blanco, M. A., Sanchez-Diaz, A., de Prada, J. M. & Moreno, S. APCste9−srw1 promotes degradation of mitotic cyclins in G(1) and is inhibited by cdc2 phosphorylation. EMBO J. 19, 3945–3955 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Visintin, R., Prinz, S. & Amon, A. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460–463 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Sigrist, S. J. & Lehner, C. F. Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90, 671–681 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Sudo, T. et al. Activation of Cdh1-dependent APC is required for G1 cell cycle arrest and DNA damage-induced G2 checkpoint in vertebrate cells. EMBO J. 20, 6499–6508 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, M. et al. The adaptor protein of the anaphase promoting complex Cdh1 is essential in maintaining replicative lifespan and in learning and memory. Nat. Cell Biol. 10, 1083–1089 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garcia-Higuera, I. et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat. Cell Biol. 10, 802–811 (2008).

    Article  PubMed  Google Scholar 

  24. Floyd, S., Pines, J. & Lindon, C. APC/CCdh1 targets aurora kinase to control reorganization of the mitotic spindle at anaphase. Curr. Biol. 18, 1649–1658 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Rape, M., Reddy, S. K. & Kirschner, M. W. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 124, 89–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Summers, M. K., Pan, B., Mukhyala, K. & Jackson, P. K. The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Mol. Cell 31, 544–556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rape, M. & Kirschner, M. W. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432, 588–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Walker, A., Acquaviva, C., Matsusaka, T., Koop, L. & Pines, J. UbcH10 has a rate-limiting role in G1 phase but might not act in the spindle checkpoint or as part of an autonomous oscillator. J. Cell Sci. 121, 2319–2326 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Clute, P. & Pines, J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nat. Cell Biol. 1, 82–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. den Elzen, N. & Pines, J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J. Cell Biol. 153, 121–136 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol. 153, 137–148 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hames, R. S., Wattam, S. L., Yamano, H., Bacchieri, R. & Fry, A. M. APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. EMBO J. 20, 7117–7127 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Di Fiore, B. & Pines, J. How cyclin A destruction escapes the spindle assembly checkpoint. J. Cell Biol. 190, 501–509 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wolthuis, R. et al. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol. Cell 30, 290–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Hayes, M. J. et al. Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C. Nat. Cell Biol. 8, 607–614 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Vodermaier, H. C., Gieffers, C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J. M. TPR subunits of the anaphase-promoting complex mediate binding to the activator protein CDH1. Curr. Biol. 13, 1459–1468 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Hagting, A. et al. Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol. 157, 1125–1137 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ohta, T., Michel, J. J., Schottelius, A. J. & Xiong, Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 3, 535–541 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Zachariae, W. & Nasmyth, K. TPR proteins required for anaphase progression mediate ubiquitination of mitotic B-type cyclins in yeast. Mol. Biol. Cell 7, 791–801 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deak, P., Donaldson, M. & Glover, D. M. Mutations in makos, aDrosophila gene encoding the Cdc27 subunit of the anaphase promotingcomplex, enhance centrosomal defects in polo and are suppressed by mutations in twins-aar, which encodes a regulatory subunit of PP2A. J. Cell Sci. 116, 4147–4158 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Carroll, C. W., Enquist-Newman, M. & Morgan, D. O. The APC subunit Doc1 promotes recognition of the substrate destruction box. Curr. Biol. 15, 11–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Matyskiela, M. E. & Morgan, D. O. Analysis of activator-binding sites on the APC/C supports a cooperative substrate-binding mechanism. Mol. Cell 34, 68–80 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Passmore, L. A. et al. Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBO J. 22, 786–796 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kimata, Y., Baxter, J. E., Fry, A. M. & Yamano, H. A role for the Fizzy-Cdc20 family of proteins in activation of the APC/C distinct from substrate recruitment. Mol. Cell 32, 576–583 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Herzog, F. et al. Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex. Science 323, 1477–1481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Z. et al. Molecular structure of the N-terminal domain of the APC/C subunit Cdc27 reveals a homo-dimeric tetratricopeptide repeat architecture. J. Mol. Biol. 397, 1316–1328 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Dube, P. et al. Localization of the coactivator Cdh1 and the cullin subunit Apc2 in a cryo-electron microscopy model of vertebrate APC/C. Mol. Cell 20, 867–879 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Yu, H. Cdc20: a WD40 activator for a cell cycle degradation machine. Mol. Cell 27, 3–16 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Nilsson, J., Yekezare, M., Minshull, J. & Pines, J. The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat. Cell Biol. 10, 1411–1420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Steen, J. A. et al. Different phosphorylation states of the anaphase promoting complex in response to antimitotic drugs: a quantitative proteomic analysis. Proc. Natl Acad. Sci. USA 105, 6069–6074 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gascoigne, K. E. & Taylor, S. S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell. 14, 111–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Kulukian, A., Han, J. S. & Cleveland, D. W. Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev. Cell 16, 105–117 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tang, Z., Bharadwaj, R., Li, B. & Yu, H. Mad2-independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev. Cell 1, 227–237 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. van Zon, W. et al. The APC/C recruits cyclin B1–Cdk1–Cks in prometaphase before D box recognition to control mitotic exit. J. Cell Biol. 190, 587–602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Burton, J. L. & Solomon, M. J. Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev. 21, 655–667 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pines, J. & Hunter, T. Isolation of a human cyclin cDNA: Evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58, 833–846 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J-M. Peters for the anti-phospho APC1 antibody and S. Taylor for the HeLa-FRT cell line. We are grateful to D. Barford for discussing results before publication and all the members of our laboratory for comments and criticisms. D.I. was supported by a fellowship from the Japanese Society for the Promotion of Science and by the Association for International Cancer Research (AICR). The work was supported by core funding to the Gurdon Institute from the Wellcome Trust and Cancer Research UK, by a project grant from the AICR and a programme grant from Cancer Research UK to J.P.

Author information

Authors and Affiliations

Authors

Contributions

D.I. and J.P. designed and interpreted the experiments; D.I. carried out and analysed all the experiments; D.I. and J.P. wrote the paper.

Corresponding author

Correspondence to Jonathon Pines.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1363 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izawa, D., Pines, J. How APC/C–Cdc20 changes its substrate specificity in mitosis. Nat Cell Biol 13, 223–233 (2011). https://doi.org/10.1038/ncb2165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing