Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments

Abstract

Plant cell morphogenesis relies on the organization and function of two polymer arrays separated by the plasma membrane: the cortical microtubule cytoskeleton and cellulose microfibrils in the cell wall. Studies using in vivo markers confirmed that one function of the cortical microtubule array is to drive organization of cellulose microfibrils by guiding the trajectories of active cellulose synthase (CESA) complexes in the plasma membrane, thus orienting nascent microfibrils. Here we provide evidence that cortical microtubules also position the delivery of CESA complexes to the plasma membrane and interact with small CESA-containing compartments by a mechanism that permits motility driven by microtubule depolymerization. The association of CESA compartments with cortical microtubules was greatly enhanced during osmotic stress and other treatments that limit cellulose synthesis. On recovery from osmotic stress, delivery of CESA complexes to the plasma membrane was observed in association with microtubule-tethered compartments. These results reveal multiple functions for the microtubule cortical array in organizing CESA in the cell cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Delivery of CESA complexes to the plasma membrane is coincident with microtubules.
Figure 2: CESA complex delivery is correlated with cortical Golgi body distribution.
Figure 3: Isoxaben, osmotic stress and brefeldin A redistribute CESA protein and alter the location and dynamics of compartments containing CESA.
Figure 4: SmaCCs associate with cortical microtubules in cells treated with isoxaben.
Figure 5: CESA tracks depolymerizing microtubule ends.
Figure 6: SmaCCs are associated with CESA complex delivery to the plasma membrane.
Figure 7: Successive break-up of one SmaCC into multiple cytoplasmic compartments.
Figure 8: SYP41 and SYP61 label a subset of SmaCCs.

Similar content being viewed by others

References

  1. Bartolini, F. & Gundersen, G. G. Generation of noncentrosomal microtubule arrays. J. Cell Sci. 119, 4155–4163 (2006).

    Article  CAS  Google Scholar 

  2. Barton, D. A., Vantard, M. & Overall, R. L. Analysis of cortical arrays from Tradescantia virginiana at high resolution reveals discrete microtubule subpopulations and demonstrates that confocal images of arrays can be misleading. Plant Cell 20, 982–994 (2008).

    Article  CAS  Google Scholar 

  3. Ehrhardt, D. W. Straighten up and fly right: microtubule dynamics and organization of non-centrosomal arrays in higher plants. Curr. Opin. Cell Biol. 20, 107–116 (2008).

    Article  CAS  Google Scholar 

  4. Shaw, S. L., Kamyar, R. & Ehrhardt, D. W. Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300, 1715–1718 (2003).

    Article  CAS  Google Scholar 

  5. Paradez, A., Wright, A. & Ehrhardt, D. W. Microtubule cortical array organization and plant cell morphogenesis. Curr. Opin. Plant Biol. 9, 571–578 (2006).

    Article  CAS  Google Scholar 

  6. Green, P. B. Mechanism for plant cellular morphogenesis. Science 138, 1404–1405 (1962).

    Article  CAS  Google Scholar 

  7. Heath, I. B. A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J. Theor. Biol. 48, 445–449 (1974).

    Article  CAS  Google Scholar 

  8. Staehelin, L. A. & Giddings, T. H. Membrane mediated control of microfibrillar order, in Developmental order, its origin and regulation. (eds. S. Subtelny & P. B. Green) 133–147 (Alan R. Liss, New York; 1982).

  9. Emons, A. M. Plasma-membrane rosettes in root hairs of Equisetum hyemale. Planta 163, 350–359 (1985).

    Article  CAS  Google Scholar 

  10. Herth, W. Arrays of plasma-membrane 'rosettes' involved in cellulose microfibril formation of Spirogyra. Planta 159, 347–356 (1983).

    Article  CAS  Google Scholar 

  11. Kimura, S. et al. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11, 2075–2086 (1999).

    Article  CAS  Google Scholar 

  12. Mueller, S. C. & Brown, R. M., Jr Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J. Cell Biol. 84, 315–326 (1980).

    Article  CAS  Google Scholar 

  13. Somerville, C. Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22, 53–78 (2006).

    Article  CAS  Google Scholar 

  14. Desprez, T. et al. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 104, 15572–15577 (2007).

    Article  CAS  Google Scholar 

  15. Persson, S. et al. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc. Natl Acad. Sci. USA 104, 15566–15571 (2007).

    Article  CAS  Google Scholar 

  16. Taylor, N. G., Howells, R. M., Huttly, A. K., Vickers, K. & Turner, S. R. Interactions among three distinct CESA proteins essential for cellulose synthesis. Proc. Natl Acad. Sci. USA 100, 1450–1455 (2003).

    Article  CAS  Google Scholar 

  17. Paredez, A. R., Somerville, C. R. & Ehrhardt, D. W. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491–1495 (2006).

    Article  CAS  Google Scholar 

  18. Haigler, C. H. & Brown, R. M. Transport of rosettes from the golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134, 111–120 (1986).

    Article  Google Scholar 

  19. Debolt, S. et al. Morlin, an inhibitor of cortical microtubule dynamics and cellulose synthase movement. Proc. Natl Acad. Sci. USA (2007).

  20. DeBolt, S., Gutierrez, R., Ehrhardt, D. W. & Somerville, C. Nonmotile cellulose synthase subunits repeatedly accumulate within localized regions at the plasma membrane in Arabidopsis hypocotyl cells following 2, 6-dichlorobenzonitrile treatment. Plant Physiol. 145, 334–338 (2007).

    Article  CAS  Google Scholar 

  21. Wightman, R. & Turner, S. R. The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J. 54, 794–805 (2008).

    Article  CAS  Google Scholar 

  22. Nebenfuhr, A. et al. Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol. 121, 1127–1142 (1999).

    Article  CAS  Google Scholar 

  23. Uemura, T. et al. Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct. Funct. 29, 49–65 (2004).

    Article  CAS  Google Scholar 

  24. Kiedaisch, B. M., Blanton, R. L. & Haigler, C. H. Characterization of a novel cellulose synthesis inhibitor. Planta 217, 922–930 (2003).

    Article  CAS  Google Scholar 

  25. Iraki, N. M., Bressan, R. A., Hasegawa, P. M. & Carpita, N. C. Alteration of the physical and chemical structure of the primary cell wall of growth-limited plant cells adapted to osmotic stress. Plant Physiol. 91, 39–47 (1989).

    Article  CAS  Google Scholar 

  26. Preuss, M. L., Serna, J., Falbel, T. G., Bednarek, S. Y. & Nielsen, E. The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells. Plant Cell 16, 1589–1603 (2004).

    Article  CAS  Google Scholar 

  27. Friedrichsen, D. M., Joazeiro, C. A., Li, J., Hunter, T. & Chory, J. Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol. 123, 1247–1256 (2000).

    Article  CAS  Google Scholar 

  28. Zheng, H. et al. NPSN11 is a cell plate-associated SNARE protein that interacts with the syntaxin KNOLLE. Plant Physiol. 129, 530–539 (2002).

    Article  CAS  Google Scholar 

  29. Nebenfuhr, A., Ritzenthaler, C. & Robinson, D. G. Brefeldin A: deciphering an enigmatic inhibitor of secretion. Plant Physiol. 130, 1102–1108 (2002).

    Article  CAS  Google Scholar 

  30. Bolte, S. et al. FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J. Microsc. 214, 159–173 (2004).

    Article  CAS  Google Scholar 

  31. Bassham, D. C., Sanderfoot, A. A., Kovaleva, V., Zheng, H. & Raikhel, N. V. AtVPS45 complex formation at the trans-Golgi network. Mol. Biol. Cell 11, 2251–2265 (2000).

    Article  CAS  Google Scholar 

  32. Hepler, P. K. & Newcomb, E. H. Microtubules and fibrils in the cytoplasm of coleus cells undergoing secondary wall deposition. J. Cell Biol. 20, 529–532 (1964).

    Article  CAS  Google Scholar 

  33. Oda, Y., Mimura, T. & Hasezawa, S. Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol. 137, 1027–1036 (2005).

    Article  CAS  Google Scholar 

  34. McFarlane, H. E., Young, R. E., Wasteneys, G. O. & Samuels, A. L. Cortical microtubules mark the mucilage secretion domain of the plasma membrane in Arabidopsis seed coat cells. Planta 227, 1363–1375 (2008).

    Article  CAS  Google Scholar 

  35. Wu, X., Xiang, X. & Hammer, J. A. 3rd. Motor proteins at the microtubule plus-end. Trends Cell Biol. 16, 135–143 (2006).

    Article  Google Scholar 

  36. Westermann, S. et al. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565–569 (2006).

    Article  CAS  Google Scholar 

  37. Grishchuk, E. L. et al. Different assemblies of the DAM1 complex follow shortening microtubules by distinct mechanisms. Proc. Natl Acad. Sci. USA 105, 6918–6923 (2008).

    Article  CAS  Google Scholar 

  38. Handa, S., Bressan, R. A., Handa, A. K., Carpita, N. C. & Hasegawa, P. M. Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiol. 73, 834–843 (1983).

    Article  CAS  Google Scholar 

  39. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  40. Earley, K. W. et al. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616–629 (2006).

    Article  CAS  Google Scholar 

  41. Kirik, V. et al. CLASP localizes in two discrete patterns on cortical microtubules and is required for cell morphogenesis and cell division in Arabidopsis. J. Cell Sci. 120, 4416–4425 (2007).

    Article  CAS  Google Scholar 

  42. Marc, J. et al. A GFP–MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10, 1927–1940 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Robert, S. et al. An Arabidopsis endo-1, 4-β-D-glucanase involved in cellulose synthesis undergoes regulated intracellular cycling. Plant Cell 17, 3378–3389 (2005).

    Article  CAS  Google Scholar 

  44. Rasband, W. S. ImageJ, US National Institutes of Health, Bethesda, MD, USA .

  45. Thevenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7, 27–41 (1998).

    Article  CAS  Google Scholar 

  46. Sage, D., Neumann, F. R., Hediger, F., Gasser, S. M. & Unser, M. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans Image Process 14, 1372–1383 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Vernhettes, E. Nielsen and N. Geldner for providing transgenic Arabidopsis seeds; V. Kirik for help with vector construction; B. Busse for modifying the ImageJ frame alignment plugin; and S. Debolt, V. Kirik, R. Brown, T. Ketelaar and H. Höfte for helpful discussions. This work was supported by grants from the National Science Foundation (0524334) and the EU Commission (FP6-2004-NEST-C1-028974).

Author information

Authors and Affiliations

Authors

Contributions

R.G., J.L. and D.E. designed, carried out and analysed experiments; A.P. created the pCESA6::CFP::CESA6 and 35S::YFP::TUA5 transgenic lines; R.G. made all figures and movies; R.G., D.E. and A.M.E. wrote the manuscript.

Corresponding author

Correspondence to David W. Ehrhardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2271 kb)

Supplementary Information

Supplementary Movie 1 (MOV 8234 kb)

Supplementary Information

Supplementary Movie 2 (MOV 10273 kb)

Supplementary Information

Supplementary Movie 3 (MOV 12466 kb)

Supplementary Information

Supplementary Movie 4 (MOV 10485 kb)

Supplementary Information

Supplementary Movie 5 (MOV 2625 kb)

Supplementary Information

Supplementary Movie 6 (MOV 3919 kb)

Supplementary Information

Supplementary Movie 7 (MOV 4092 kb)

Supplementary Information

Supplementary Movie 8 (MOV 5018 kb)

Supplementary Information

Supplementary Movie 9 (MOV 1064 kb)

Supplementary Information

Supplementary Movie 10 (MOV 305 kb)

Supplementary Information

Supplementary Movie 11 (MOV 243 kb)

Supplementary Information

Supplementary Movie 12 (MOV 3355 kb)

Supplementary Information

Supplementary Movie 13 (MOV 12410 kb)

Supplementary Information

Supplementary Movie 14 (MOV 6700 kb)

Supplementary Information

Supplementary Movie 15 (MOV 1084 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierrez, R., Lindeboom, J., Paredez, A. et al. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11, 797–806 (2009). https://doi.org/10.1038/ncb1886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1886

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing