Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipoprotein receptors: new roles for ancient proteins

Abstract

Lipoprotein receptors used to be viewed simply as the means by which cells were supplied with lipids for energy production and membrane synthesis. This perception has now changed dramatically. Megalin, a member of the low density lipoprotein receptor gene family, turns out to mediate the endocytic uptake of retinoids and steroids, thus helping to regulate their biological function. Other members of this receptor family interact with cytosolic signalling proteins, giving this evolutionarily ancient family of receptors an entirely unexpected new role as transducers of extracellular signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The LDL receptor family.
Figure 2: Endocytosis of ligands by the LDL receptor family.
Figure 3: Hypothetical modes of signal transmission by receptor interactions with cytosolic adaptors.

Similar content being viewed by others

References

  1. Brown, M. S. & Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).

    Article  CAS  Google Scholar 

  2. Goldstein, J. L. & Brown, M. S. in The Metabolic Basis of Inherited Disease Vol. 6 (eds Scriver, C.R., Beaudet, A.L., Sly, W. S. & Valle, D.) 1215–1250 (McGraw-Hill, New York, 1989).

  3. Hobbs, H. H., Russell, D. W., Brown, M. S. & Goldstein, J. L. The LDL receptor locus and familial hypercholesterolemia: Mutational analysis of a membrane protein. Annu. Rev. Genet. 24, 133–170 (1990).

    Article  CAS  Google Scholar 

  4. Chen, W.-J., Goldstein, J. L. & Brown, M. S. NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J. Biol. Chem. 265, 3116– 3123 (1990).

    CAS  PubMed  Google Scholar 

  5. Esser, V., Limbird, L. E., Brown, M. S., Goldstein, J. L. & Russell, D. W. Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. J. Biol. Chem. 263, 13282–13290 ( 1988).

    CAS  PubMed  Google Scholar 

  6. Davis, C. G. et al. Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature 326 , 760–765 (1987).

    Article  CAS  Google Scholar 

  7. Fass, D., Blacklow, S., Kim, P. S. & Berger, J. M. Molecular basis of familial hypercholesterolaemia from structure of the LDL receptor module . Nature 388, 691–693 (1997).

    Article  CAS  Google Scholar 

  8. Bansal, A. & Gierasch, L. M. The NPXY internalization signal of the LDL receptor adopts a reverse-turn conformation. Cell 67, 1195–1201 (1991).

    Article  CAS  Google Scholar 

  9. Südhof, T. C., Goldstein, J. L., Brown, M. S. & Russell, D. W. The LDL receptor gene: A mosaic of exons shared with different proteins. Science 228, 815–822 ( 1985).

    Article  Google Scholar 

  10. Gilbert, W. DNA sequencing and gene structure. Science 214, 1305–1312 (1981).

    Article  CAS  Google Scholar 

  11. Herz, J. et al. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J. 7, 4119–4127 (1988).

    Article  CAS  Google Scholar 

  12. Saito, A., Pietromonaco, S., Loo, A. K.-C. & Farquhar, M. G. Complete cloning and sequencing of rat gp330/‘‘megalin’’. A distinctive member of the low density lipoprotein receptor gene family. Proc. Natl Acad. Sci. USA 91, 9725– 9729 (1994).

    Article  CAS  Google Scholar 

  13. Takahashi, S., Kawarabayasi, Y., Nakai, T., Sakai, J. & Yamamoto, T. Rabbit very low density lipoprotein receptor: A low density lipoprotein receptor-like protein with distinct ligand specificity. Proc. Natl Acad. Sci. USA 89, 9252–9256 (1992).

    Article  CAS  Google Scholar 

  14. Kim, D.-H. et al. Human apolipoprotein E receptor 2. J. Biol. Chem. 271, 8373–8380 ( 1996).

    Article  CAS  Google Scholar 

  15. Novak, S., Hiesberger, T., Schneider, W. J. & Nimpf, J. A new low density lipoprotein receptor homologue with 8 ligand binding repeats in brain of chicken and mouse. J. Biol. Chem. 271, 11732–11736 (1996).

    Article  CAS  Google Scholar 

  16. Krieger, M. & Herz, J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu. Rev. Biochem. 63, 601 –637 (1994).

    Article  CAS  Google Scholar 

  17. Gliemann, J. Receptors of the low density lipoprotein receptor family in man. Multiple functions of the large family members via interaction with complex ligands . Biol. Chem. 379, 951– 964 (1998).

    CAS  PubMed  Google Scholar 

  18. Yochem, J. & Greenwald, I. A gene for a low density lipoprotein receptor-related protein in the nematode Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 90, 4572– 4576 (1993).

    Article  CAS  Google Scholar 

  19. Trommsdorff, M., Borg, J. P., Margolis, B. & Herz, J. Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273, 33556–33560 (1998).

    Article  CAS  Google Scholar 

  20. Kita, T. et al. Hepatic uptake of chylomicron remnants in WHHL rabbits: A mechanism genetically distinct from the low density lipoprotein receptor. Proc. Natl Acad. Sci. USA 79, 3623– 3627 (1982).

    Article  CAS  Google Scholar 

  21. Willnow, T. E., Sheng, Z., Ishibashi, S. & Herz, J. Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science 264, 1471–1474 ( 1994).

    Article  CAS  Google Scholar 

  22. Rohlmann, A., Gotthardt, M., Hammer, R. E. & Herz, J. Inducible inactivation of hepatic LRP gene by Cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants. J. Clin Invest. 101, 689–695 ( 1998).

    Article  CAS  Google Scholar 

  23. Strickland, D. K. et al. Sequence identity between the a2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J. Biol. Chem. 265, 17401–17404 (1990).

    CAS  PubMed  Google Scholar 

  24. Kristensen, T. et al. Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) is the a2-macroglobulin receptor. FEBS Lett. 276, 151–155 ( 1990).

    Article  Google Scholar 

  25. Ishibashi, S. et al. Hypercholesterolemia in LDL receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893 ( 1993).

    Article  CAS  Google Scholar 

  26. Herz, J., Clouthier, D. E. & Hammer, R. E. LDL receptor-related protein internalizes and degrades uPA/PAI-1 complexes and is essential for embryo implantation. Cell 71, 411–421 ( 1992).

    Article  CAS  Google Scholar 

  27. Rajewsky, K. et al. Conditional gene targeting. J. Clin. Invest. 98, 600–603 (1996).

    Article  CAS  Google Scholar 

  28. Rohlmann, A., Gotthardt, M., Willnow, T. E., Hammer, R. E. & Herz, J. Sustained somatic gene inactivation by viral transfer of Cre recombinase. Nature Biotechnol. 14, 1562–1565 (1996).

    Article  CAS  Google Scholar 

  29. Christensen, E. I., Birn, H., Verroust, P. & Moestrup, S. K. Membrane receptors for endocytosis in the renal proximal tubules. Int. Rev. Cytol. 180, 237–284 ( 1998).

    Article  CAS  Google Scholar 

  30. Orlando, R. A. et al. Megalin is an endocytic receptor for insulin. J. Am. Soc. Nephrol. 9, 1759–1766 (1998).

    CAS  PubMed  Google Scholar 

  31. Nykjaer, A. et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 96, 507–515 (1999).

    Article  CAS  Google Scholar 

  32. Haddad, J. G. Plasma vitamin D-binding protein (Gc-globulin): Multiple tasks. J. Steroid Biochem. 53, 1–6 (1995).

    Article  Google Scholar 

  33. Newcomer, M. E., Jamison, R. S. & Ong, D. E. Structure and function of retinoid-binding proteins . Subcell. Biochem. 30, 53– 80 (1998).

    Article  CAS  Google Scholar 

  34. Christensen, E. I. et al. Evidence for an essential role of megalin in transepithelial transport of retinol. J. Am. Soc. Nephrol. 10, 685–695 (1999).

    CAS  PubMed  Google Scholar 

  35. Safadi, F. F. et al. Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J. Clin. Invest. 103 , 239–251 (1999).

    Article  CAS  Google Scholar 

  36. Leheste, J.-R. et al. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am. J. Pathol. (in the press).

  37. Rosner, W. Plasma steroid-binding proteins. Endocrinol. Metab. Clin. North Am. 20, 697–720 ( 1991).

    Article  CAS  Google Scholar 

  38. Maden, M. Vertebrate development: a nervous vitamin. Curr. Biol. 8, R846–R849 (1998).

    Article  CAS  Google Scholar 

  39. Mendel, C. M. The free hormone hypothesis: a physiologically based mathematical model. Endocr. Rev. 10, 232–274 (1989).

    Article  CAS  Google Scholar 

  40. Bikle, D. D. et al. Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J. Clin. Endocrinol. Metab. 63, 954– 959 (1986).

    Article  CAS  Google Scholar 

  41. Bikle, D. D., Siiteri, P. K., Ryzen, E. & Haddad, J. G. Serum protein binding of 1,25-dihydroxyvitamin D: a reevaluation by direct measurement of free metabolite levels. J. Clin. Endocr. Metab. 61, 969–975 ( 1985).

    Article  CAS  Google Scholar 

  42. Gerard, A. et al. Electron microscope radioautographic evidence of in vivo androgen-binding protein internalization in the rat epididymis principal cells. Endocrinology 122, 1297–1307 (1988).

    Article  CAS  Google Scholar 

  43. Joseph, D. R. Sequence and functional relationships between androgen-binding protein/sex hormone-binding globulin and its homologs protein S, Gas6, laminin, and agrin . Steroids. 62, 578–588 (1997).

    Article  CAS  Google Scholar 

  44. Porto, C. S., Gunsalus, G. L., Bardin, C. W., Phillips, D. M. & Musto, N. A. Receptor-mediated endocytosis of an extracellular steroid-binding protein (TeBG) in MCF-7 human breast cancer cells. Endocrinology 129, 436–445 (1991).

    Article  CAS  Google Scholar 

  45. Bavik, C., Ward, S. J. & Chambon, P. Developmental abnormalities in cultured mouse embryos deprived of retinoic acid by inhibition of yolk-sac retinol binding protein synthesis. Proc. Natl Acad. Sci. USA 93, 3110–3114 (1996).

    Article  CAS  Google Scholar 

  46. Ward, S. J., Chambon, P., Ong, D. E. & Bavik, C. A retinol-binding protein receptor-mediated mechanism for uptake of vitamin A to postimplantation rat embryos. Biol. Reprod. 57, 751– 755 (1997).

    Article  CAS  Google Scholar 

  47. Morriss-Kay, G. M. & Ward, S. J. Retinoids and mammalian development. Int. Rev. Cytol. 188, 73–131 (1999).

    Article  CAS  Google Scholar 

  48. Senoo, H. et al. Internalization of retinol-binding protein in parenchymal and stellate cells of rat liver. J. Lipid. Res. 31, 1229–1239 (1990).

    CAS  PubMed  Google Scholar 

  49. Matarese, V. & Lodish, H. F. Specific uptake of retinol-binding protein by variant F9 cell lines. J. Biol. Chem. 268 , 18859–18865 (1993).

    CAS  PubMed  Google Scholar 

  50. Tosetti, F., Campelli, F. & Levi, G. Studies on the cellular uptake of retinol binding protein and retinol. Exp. Cell Res. 250, 423– 433 (1999).

    Article  CAS  Google Scholar 

  51. Kang, D. E. et al. Genetic association of the low-density lipoprotein receptor-related protein gene (LRP), an apolipoprotein E receptor, with late-onset Alzheimer"s disease. Neurology 49, 56– 61 (1997).

    Article  CAS  Google Scholar 

  52. Schmechel, D. E. et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer"s disease . Proc. Natl Acad. Sci. USA 90, 9649– 9653 (1993).

    Article  CAS  Google Scholar 

  53. Chartier-Harlin, M. C. et al. Early-onset Alzheimer"s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353, 844–846 (1991).

    Article  CAS  Google Scholar 

  54. Kounnas, M. Z. et al. LDL receptor-related protein, a multifunctional apoE receptor, binds secreted β-amyloid precursor protein and mediates its degradation . Cell 82, 331–340 (1995).

    Article  CAS  Google Scholar 

  55. Riddell, D. R., Graham, A. & Owen, J. S. Apolipoprotein E inhibits platelet aggregation through the L-arginine:nitric oxide pathway. Implications for vascular disease. J. Biol. Chem. 272, 89–95 (1997).

    Article  CAS  Google Scholar 

  56. Howell, B. W., Lanier, L. M., Frank, R., Gertler, F. B. & Cooper, J. A. The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids . Mol. Cell Biol. 19, 5179– 5188 (1999).

    Article  CAS  Google Scholar 

  57. Blaikie, P. et al. A region in Shc distinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. J. Biol. Chem. 269, 32031–32034 (1994).

    CAS  PubMed  Google Scholar 

  58. Pawson, T. & Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075– 2080 (1997).

    Article  CAS  Google Scholar 

  59. Borg, J. P., Ooi, J., Levy, E. & Margolis, B. The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol. Cell. Biol. 16, 6229–6241 (1996).

    Article  CAS  Google Scholar 

  60. Zambrano, N. et al. Interaction of the phosphotyrosine interaction/phosphotyrosine binding-related domains of Fe65 with wild-type and mutant Alzheimer’s beta- amyloid precursor proteins. J. Biol. Chem. 272 , 6399–6405 (1997).

    Article  CAS  Google Scholar 

  61. Trommsdorff, M. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701 (1999).

    Article  CAS  Google Scholar 

  62. Howell, B. W., Hawkes, R., Soriano, P. & Cooper, J. A. Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389, 733–737 ( 1997).

    Article  CAS  Google Scholar 

  63. Ware, M. L. et al. Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19, 239– 249 (1997).

    Article  CAS  Google Scholar 

  64. Sheldon, M. et al. Scrambler and yotari disrupt the disabled gene and produce a reeler- like phenotype in mice. Nature 389, 730–733 (1997).

    Article  CAS  Google Scholar 

  65. Curran, T. & D’Arcangelo, G. Role of reelin in the control of brain development. Brain Res. Brain Res. Rev. 26, 285–294 (1998).

    Article  CAS  Google Scholar 

  66. Falconer, D. S. Two new mutants "trembler" and "reeler" with neurological actions in the house mouse. J. Genet. 50, 192– 201 (1951).

    Article  CAS  Google Scholar 

  67. Howell, B. W., Herrick, T. M. & Cooper, J. A. Reelin-induced tryosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13, 643–648 (1999).

    Article  CAS  Google Scholar 

  68. Howell, B. W., Gertler, F. B. & Cooper, J. A. Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. EMBO J. 16, 121 –132 (1997).

    Article  CAS  Google Scholar 

  69. Koleske, A. J. et al. Essential roles for the Abl and Arg tyrosine kinases in neurulation . Neuron 21, 1259–1272 (1998).

    Article  CAS  Google Scholar 

  70. Hsu, H. Y., Hajjar, D. P., Khan, K. M. & Falcone, D. J. Ligand binding to macrophage scavenger receptor-A induces urokinase-type plasminogen activator expression by a protein kinase-dependent signaling pathway. J. Biol. Chem. 273, 1240–1246 (1998).

    Article  CAS  Google Scholar 

  71. Hiltunen, T.P. & Yla-Herttuala, S. Expression of lipoprotein receptors in atherosclerotic lesions. Atherosclerosis 137 (Suppl.), 81–88 ( 1998).

    Article  Google Scholar 

  72. Porto, C. S. et al. Receptors for androgen-binding proteins: internalization and intracellular signalling. J. Steroid Biochem. Mol. Biol. 53, 561–565 (1995).

    Article  CAS  Google Scholar 

  73. Rosner, W., Hryb, D.J., Khan, M.S., Nakhla, A. M. & Romas, N.A. Sex hormone-binding globulin mediates steroid hormone signal transduction at the plasma membrane. J. Steroid Biochem. Mol. Biol. 69, 481–485 ( 1999).

    Article  CAS  Google Scholar 

  74. Goretzki, L. & Mueller, B.M. Low-density-lipoprotein-receptor-related protein (LRP) interacts with a GTP-binding protein. Biochem. J. 336, 381–386 ( 1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Bönsch, J. Gliemann, J. Goldstein, D. Mangelsdorf, and D. Russell for helpful comments and suggestions. T.E.W. is supported by grants and a Heisenberg fellowship from the Deutsche Forschungsgemeinschaft and the BMFT. A.N. is supported by grants from the Danish Medical Research Council, Carlsberg Foundation, The Novo Nordisk Foundation and the Lysgaard Foundation. J.H. is an Established Investigator of the American Heart Association and Parke Davis and also supported by grants from the NIH, the Human Frontiers Science Program, and the Friends of the Alzheimer Disease Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Nykjaer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willnow, T., Nykjaer, A. & Herz, J. Lipoprotein receptors: new roles for ancient proteins. Nat Cell Biol 1, E157–E162 (1999). https://doi.org/10.1038/14109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/14109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing