Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Use of Agrobacterium rhizogenes to Create Chimeric Apple Trees Through Genetic Grafting

Abstract

We induced roots in apple by cutting and by layering stems inoculated with A. rhizogenes, thereby producing chimeric plants containing transformed roots and normal shoots. We show that mannopine, whose synthesis is encoded by the Ri T-DNA, is produced in the roots and translocated to the aerial parts. A. rhizogenes can thus be used to propagate recalcitrant apple genotypes, creating chimeric plants that contain the products of foreign genes in their aerial parts, without having foreign genes physically present in the fruit. Furthermore, a single gene from the Ri TL-DNA (ORF 12 or rolC) is sufficient to produce root induction in apple, suggesting that this gene could be permanently inserted into the genome of a rootstock to improve rooting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tepfer, D. 1989. Ri T-DNA from Agrobacterium rhizogenes: a source of genes having applications in rhizosphere biology and plant development, ecology and evolution. p. 296–342. In: Plant microbe interactions, molecular and genetic perspectives. Kosuge, T., Nester, E. W. (Eds.). McGraw-Hill Publishing Company, NY.

    Google Scholar 

  2. Ricker, A.J. 1934. Seasonal development of hairy root, crown gall, and wound overgrowth on apple trees in the nursery. J. Agric. Res. 48: 887–911.

    Google Scholar 

  3. Moore, L., Warren, G. and Strobel, G. 1979. Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes . Plasmid 2: 617–626.

    Article  CAS  PubMed  Google Scholar 

  4. Strobel, G., Nachmias, A., Satouri, S. and Hess, W. 1988. Improvements in the growth and yield of olive trees by transformation with the Ri plasmid of A. rhizogenes . Can. J. Bot. 66: 2581–2585.

    Article  Google Scholar 

  5. Ricker, A., Berbee, J. and Smalley, E. 1959. Effects of crown gall and hairy root on the growth of apple trees. Phytopathology 49: 88–90.

    Google Scholar 

  6. Swingle, C.F. 1935. Burr-knot of apple trees; its relation to crown gall and to vegetative propagation. J. Hered. 16: 313–320.

    Article  Google Scholar 

  7. Decourtye, L. 1967. Etude de quelques caractères à contrôle génétique simple chez le pommier (Malus Sp) et le poirier (Pyrus communis). Ann. Amélior. Plantes 17: 243–265.

    Google Scholar 

  8. Quattrocchio, F., Benvenuto, E., Tavazza, R., Cuozzo, L. and Ancora, G. 1986. A study of the possible role of auxin in potato “hairy root” tissues. J. Plant Physiol. 123: 143–150.

    Article  CAS  Google Scholar 

  9. Shen, W., Petit, A., Guern, J. and Tempé, J. 1988. Hairy root are more sensitive to auxin than normal roots. Proc. Natl. Acad. Sci. USA 85: 3417–3421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Spano, L., Mariotti, D., Cardarelli, M., Branca, C. and Costantino, P. 1988. Morphogenesis and auxin sensitivity of transgenic tobacco with different complements of Ri T-DNA. Plant Physiol. 87: 479–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. James, D.J. and Thurbon, I.J. 1981. Phenolic compounds and other factors controlling rhizogenesis in vitro in the apple rootstocks M9 and M26. Z. Pflanzenphysiol. 105: 11–20.

    Article  CAS  Google Scholar 

  12. Treharne, K.J. 1981. Morphogenetic substances in xylem sap. Rep. E. Mailing Res. Stn for 1980: 142–143

    Google Scholar 

  13. Spano, L., Pomponi, M., Van Slogteren, G.M.S. and Tempé, J. 1982. Identification of T-DNA in the root-inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Plant Mol. Biol. 1: 291–300.

    Article  CAS  PubMed  Google Scholar 

  14. Filetici, P., Spano, L. and Costantino, P. 1987. Conserved regions in the T-DNA of different Agrobacterium rhizogenes root inducing plasmid. Plant Mol. Biol. 9: 19–26.

    Article  CAS  PubMed  Google Scholar 

  15. Cardarelli, M., Spano, L., Mariotti, D., Mauro, M., Van Sluys, M. and Costantino, P. 1987. The role of auxin in hairy root induction. Mol. Gen. Genet. 208: 457–463.

    Article  CAS  Google Scholar 

  16. Levesque, H., Delepaire, P., Rouse, P., Slighton, J. and Tepfer, D. 1988. Common evolutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens . Plant Mol. Biol. 11: 731–744.

    Article  CAS  PubMed  Google Scholar 

  17. James, D.J., Passey, A.J., Barbara, D.J. and Bevan, M. 1989. Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep. 7: 658–661.

    CAS  PubMed  Google Scholar 

  18. Rugini, E. 1986. Olive (Olea europaea L.), p. 253–267. In: Biotechnology in Agriculture and Forestry. YPS Bajaj (Ed.). Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  19. Lespinasse, Y., Godicheau, M. and Duron, M. 1983. Potential value and method of producing haploids in the apple tree, Malus pumila Mill.). Act. Hort. 131: 223–230.

    Article  Google Scholar 

  20. Jones, O.P., Hopgood, M.E. and O'Farrell, D. 1977. Propagation in vitro of M26 apple rootstocks. J. Hort. Sci. 52: 235–238.

    Article  Google Scholar 

  21. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  22. Chilton, M.D., Tepfer, D., Petit, A., David, C., Casse-Delbart, F. and Tempé, J. 1982. Agrobacterium rhizogenes inserts T-DNA into the genome of host plant root cells. Nature 295: 432–434.

    Article  CAS  Google Scholar 

  23. Jouanin, L. 1984. Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12: 91–102.

    Article  CAS  PubMed  Google Scholar 

  24. Lahners, K., Byrne, M.C. and Chilton, M.D. 1984. T-DNA fragments of hairy root plasmid pRi8196 are distantly related to octopine and nopaline Ti plasmid T-DNA. Plasmid 11: 130–140.

    Article  CAS  PubMed  Google Scholar 

  25. Huffman, G., White, F., Gordon, M. and Nester, E. 1984. Hairy root inducing plasmid: Physical map and homology to tumor-inducing plasmids. J. Bacteriol. 157: 269–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoekema, A., Hirsch, P., Hooykaas, P. and Shilperoort, R. 1983. A binary plant vector strategy based on separation of vir and T region of the Agrobacterium Ti plasmid. Nature 303: 179–180.

    Article  CAS  Google Scholar 

  27. An, G., Ebert, P., Mitra, A. and Ha, S. 1986. Binary vectors, p. (A3)1–(A3)19. In: Plant Gene Research Manual. Gelvin, S., Schilperoort, R., Verma, D. (Eds.). Martinus Nijhoff, Netherlands.

    Google Scholar 

  28. Odel, J., Nagy, F. and Chua, N.-H. 1985. Identification of DNA sequences required for activity of the CaMV 35S promoter. Nature 313: 810–812.

    Article  Google Scholar 

  29. Slighton, J., Durand-Tardif, M., Jouanin, L. and Tepfer, D. 1986. Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. J. Biol. Chem. 261: 108–121.

    Google Scholar 

  30. Petit, A., David, C., Dahl, G., Ellis, J.G., Guyon, P., Casse-Delbart, F. and Tempé, J. 1983. Further extension of the opine concept: Plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol. Gen. Genet. 190: 204–214.

    Article  CAS  Google Scholar 

  31. Scheffé, H. 1959. The Analysis of Variance. John Wiley and Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambert, C., Tepfer, D. Use of Agrobacterium rhizogenes to Create Chimeric Apple Trees Through Genetic Grafting. Nat Biotechnol 9, 80–83 (1991). https://doi.org/10.1038/nbt0191-80

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0191-80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing