Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Use of Recombinant DNA to Improve Production of Cephalosporin C By Cephalosporium acremonium

Abstract

A recombinant DNA-modified strain of the filamentous fungus Cephalosporium acremonium, strain LU4-79-6, produced more of the antibiotic cephalosporin C than a non-recombinant strain, strain 394-4, from which it was derived by transformation. Strain 394-4, derived from C. acremonium ATCC 11550 by multiple rounds of mutagenesis and screening for improved antibiotic biosynthesis, has been useful for producing cephalosporin C at industrial scale. Strain LU4-79-6 has one insert of pPS56 DNA in its high molecular weight DNA. Plasmid pPS56 includes a dominant hygromycin B resistance marker and a 7 kb BamH1 C. acremonium DNA fragment containing the cefEF gene. The cefEF gene codes for a bifunctional protein that exhibits two sequentially-acting cephalosporin biosynthetic enzyme activities: deacetoxycephalosporin C synthetase (DAOCS) and deacetylcephalosporin C synthetase (DACS). Extracts of strain LU4-79-6 contained 2-fold more DAOCS activity than corresponding extracts of its non-recombinant parent. Strain LU4-79-6 excretes less penicillin N, the substrate of DAOCS, than strain 394-4. Resistance to hygromycin B, presence of pPS56 DNA, elevated intracellular DAOCS, decreased penicillin N production, and increased cephalosporin C production are retained after growth in a medium free of hygromycin B. The superiority of the recombinant strain has been confirmed at pilot scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bunnell, C.A., Luke, W.D., and Perry, R.M. Jr. 1986. Industrial manufacture of cephalosporins, p. 255–284. In Beta-lactam Antibiotics for Clinical Use S.F. Queener, J A. Weber, and S.W Queener (Eds.) Marcel Dekker, Inc, New York, New York.

    Google Scholar 

  2. Queener, S.F. 1986. History and origin of the beta-lactam antibiotics, p. 3–13. In: Beta-lactam Antibiotics for Clinical Use. S. F. Queener, J.A. Weber, and S.W. Queener (Eds.). Marcel Dekker, Inc, New York, New York.

  3. Queener, S.W. and Lively, D.H. 1986. Screening and selection for strain improvement, p. 155–169. In: Manual of Industrial Microbiology and Biotechnology. A. L. Demam and N. A. Solomon (Eds.) American Society for Microbiology, Washington, D.C.

    Google Scholar 

  4. Queener, S.W. and Neuss, N. 1982. The biosynthesis of the betalactam antibiotics, p. 1–100. In: Chemistry and Biology of Beta-Lactam Antibiotics, Vol. 3. R.B. Morin and M. Gorman (Eds). Academic Press, New York.

    Google Scholar 

  5. Abraham, E.P. 1986. Biosynthesis of penicillins and cephalosporins, p.103–116. In Beta-lactam Antibiotics for Clinical Use. S.F. Queener, J A. Weber, and S.W Queener (Eds.). Marcel Dekker, Inc, New York, New York.

    Google Scholar 

  6. Dotzlaf, J.E. and Yeh, W.-K. 1987. Copurification and characterization of deacetyoxycephalosporin C synthetase/hydroxylase from Cephalosporium acremonium . J. Bacteriology. 169:1611–1618.

    Article  CAS  Google Scholar 

  7. Scheidigger, A., Kuenzi, M.T. and Nuesch, J. 1984. Partial purification and catalytic properties of a bifunctional enzyme in the biosynthetic pathway of beta-lactams in Cephalosporium acremonium . J. Antibiot. 37:522.

    Article  Google Scholar 

  8. Samson, S.M., Belagaje, R., Blankenship, D.T., Chapman, J.L., Perry, D., Skatrud, P.L., VanFrank, R.M., Abraham, E.P., Baldwin, J.E., Queener, S.W. and Ingolia, T.D. 1985. Isolation, sequence determination and expression in Eschenchia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium . Nature 311:191–194

    Article  Google Scholar 

  9. Samson, S.E., Dotzlaf, J.E., Slisz, M.L., Becker, G.W., Van Frank, R.M., Veal, L.E. Yeh, W.-K. Miller, J.R. Queener, S.W. and Ingolia, T.D. 1987. Cloning and expression of the fungal expandase/ hydroxylase gene involved in cephalosporin C biosynthesis. Bio/Technology 5:1207–1214.

    CAS  Google Scholar 

  10. Samson, S.M., Chapman, J.L., Belagaje, R., Queener, S.W. and Ingolia, T.D. 1987. Analysis of the role of cysteine residues in isopenicillin N synthetase activity by site-directed mutagenesis. Proc. Natl. Acad. Sci. USA. 84:5705–5709.

    Article  CAS  Google Scholar 

  11. Kaster, K.R., Burgett, S.G. and Ingolia, T.D. 1984. Hygromycin B resistance as a dominant marker in yeast. Curr. Genet. 8:353–358.

    Article  CAS  Google Scholar 

  12. Queener, S.W., Ingolia, T.D., Skatrud, P.L., Chapman, J.L. and Kaster, K.R. 1985. A system for genetic transformation of Cephalosporium acremonium, p. 468–472. In Microbiology 1985. L. Leive (Ed.). American Society for Microbiology, Washington, D.C.

    Google Scholar 

  13. Skatrud, P.L. and Queener, S.W. 1984. Cloning of a DNA fragment from Cephalosporium acremonium, which functions as an autonomous replication sequence in yeast. Curr. Genet. 8:155–163.

    Article  CAS  Google Scholar 

  14. Carr, L.G., Skatrud, P.L., Ingolia, T.D. and Queener, S.W. 1987. Organization of the 5.8S, 16–18S, and 23–28S ribosomal RNA genes of Cephalosporium acremonium . Curr. Genet. 12:209–214

    Article  CAS  Google Scholar 

  15. Skatrud, P.L., Queener, S.W., Carr, L.G. and Fisher, D.L. 1987. Efficient integrative transformation of Cephalosporium acremonium . Curr. Genetics. 12:337–348.

    Article  CAS  Google Scholar 

  16. Chapman, J.L., Skatrud, P.L., Ingolia, T.D., Samson, S.M., Kaster, K.R. and Queener, S.W., 1987. Recombinant DNA studies Cephalosporium acremonium, p. 165–174. In: Developments in Industrial Microbiology, Vol. 27. G. Pierce, (Ed.). Society for Industrial Microbiology.

    Google Scholar 

  17. Skatrud, P.L., Fisher, D.L., Ingolia, T.D. and Queener, S.W. 1986. Improved transformation of Cephalosporium acremonium, p. 111–119. In: The Proceedings of the Fifth International Symposium on the Genetics of Industrial Microorganisms. M. Alacevic, D Hranueli, and Z. Toman, (Eds.). Pliva, Zagreb, Yugoslavia.

    Google Scholar 

  18. Newton, G.G.F. and Abraham, E.P. 1955. Cephalosporin N: A new type of penicillin. Nature. 175:548.

    Article  CAS  Google Scholar 

  19. Neuss, N, Berry, D.M., Kupka, J., Demian, A.L., Queener, S.W., Duckworth, D.C. and Huckstep, L.L. 1982. High performance liquid chromatography of natural products. V. The use of HPLC in the cell-free biosynthetic conversion of alpha-aminoadipyl-cysteinyl-valine (LLD) into isopenicillin N. J. Antibiotics. 35:580–584

    Article  CAS  Google Scholar 

  20. Usher, J.J., Lewis, M. and Hughes, D.W. 1985. Determination by HPLC of some compounds involved in the biosynthesis of penicillin and cephalosporin. Anal. Chem. 149:105–110.

    CAS  Google Scholar 

  21. Roggenkamp, R., Kustermann-Kuhn, B. and Hollenberg, C.P. 1981. Expression and processing of bacterial β-lactamase in the yeast Saccharomyces cerevisiae . Proc. Natl. Acad. Sci. USA. 78:4466–4470

    Article  CAS  Google Scholar 

  22. Skatrud, P.L. and Queener, S.W. 1989. An electrophoretic molecular karyotype for Cephalosporium acremonium . Gene. In press.

  23. Hilgendorf, P., Heiser, V., Diekmann, H. and Thoma, M. 1987. Constant dissolved oxygen concentrations in cephalosporin C fermentation: Applicability of different controllers and effect on fermentation parameters. Appl. Microbiol. Biotechnol. 27:247–251.

    Article  CAS  Google Scholar 

  24. Huber, F.M., Baltz, R.H. and Caltrider, P.G., 1968. Formation of desacetylcephalosporin C in cephalosporin C fermentations. Applied Micro. 16:1011–1014.

    CAS  Google Scholar 

  25. Hinnen, A. and Nuesch, J. 1976. Enzymatic hydrolysis of cephalosporin C by an extracellular acetylhydrolase of Cephalosporium acremonium . Antimicrobial Agents and Chemotherapy. 9:824–830.

    Article  CAS  Google Scholar 

  26. Meselson, M. and Yuan, R. 1968. DNA restriction enzyme from E. coli Nature. 217:1110–1114

    Article  CAS  Google Scholar 

  27. Levinson, A., Silver, D. and Seed, B. 1984. Minimal size plasmids containing an M13 origin for production of single-strand transducing particles. J. Mol. Appl. Genet. 2:507–517.

    CAS  PubMed  Google Scholar 

  28. Skatrud, P.L. 1986. Recombinant DNA Studies in Cephalosporium acremonium . Ph.D. Thesis. Indiana University, Bloomington, IN.

    Google Scholar 

  29. Queener, S.W., Wilkerson, S., Tunin, D.R., McDermott, J.P., Chapman, J.L., Nash, C., Platt, C. and Westpheling, J. 1984. Cephalosporin C fermentation: Biochemical and regulatory aspects of sulfur metabolism, p. 141–170. In: Biotechnology of Industrial Antibiotics. E.J. Vandamme, Marcel Dekker Inc. New York, Basel.

    Google Scholar 

  30. Redstone, M.O. 1971. A specific chemical assay for the acetyl moiety of cephalosponns. Prog. Abstr. Intersci., Conf. Antimicrob. Ag. Chemother., 11th, Atlantic City, N J., Abstr. 73, p. 37.

    Google Scholar 

  31. Niedermayer, A.O., Russo-Alesi, S.M., Lendzain, C.A. and Kelly, J.M. 1960. Automated system for continuous determination of penicillin in fermentation medium using hydroxylamine reagent. Anal. Chem. 32:664–666.

    Article  CAS  Google Scholar 

  32. Huber, F.M. and Tietz, A.J. 1983. Defined media strategies for the biosynthesis of Cephalosporin C. Biotech. Letters. 5:385–390.

    Article  CAS  Google Scholar 

  33. Ingolia, T.D. and Queener, S.W. 1989. Beta-lactam Biosynthetic Genes. Medicinal Chemistry Reviews. In Press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skatrud, P., Tietz, A., Ingolia, T. et al. Use of Recombinant DNA to Improve Production of Cephalosporin C By Cephalosporium acremonium. Nat Biotechnol 7, 477–485 (1989). https://doi.org/10.1038/nbt0589-477

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0589-477

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing