Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Production of Soluble Recombinant Proteins in Bacteria

Abstract

Production of recombinant proteins in bacteria is limited by the formation of cytoplasmic aggregates (inclusion bodies or “IBs”). This review summarizes what is known about why IBs form and ways of increasing the production of soluble protein in bacterial systems. The easiest way to lower IB formation is to reduce the growth temperature of the bacteria. IB formation is not directly correlatable with the production rate, nor with the size of the produced protein. The primary sequences of a few proteins that do not form IBs at higher production temperatures contain either a low content of proline residues or stretches of acidic amino acids. Metal ion binding may also lower the tendency to form IBs at growth temperatures above 30°C. Three aspects of protein synthesis in mammalian cells, compartmentation, interprotein interactions (sortases, foldases, unfoldases, and chaperonins), and post-translational modifications, have significant effects on the solubility of the proteins produced. Possibilities for mimicking these mechanisms in bacteria via secretion, cloning of mammalian foldases, and mutation of the post-translational modification systems of the host bacteria are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marston, F.A.O. 1986. The purification of eukaryotic polypeptides synthesized in Eschenchia coli. Biochem. J. 240:1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wittrup, K.D., Mann, M.B., Fenton, D.M., Tsai, L.B. and Bailey, J.E. 1988. Single-cell light scatter as a probe of refractile body formation in recombinant Escherichia coli. Nature Biotechnology 6:2423–426.

    CAS  Google Scholar 

  3. Hartley, D.L. and Kane, J.F. 1988. Properties of inclusion bodies from recombinant Escherichia coli. Biochem. Soc. Trans. 16:101–102.

    CAS  PubMed  Google Scholar 

  4. Marston, F.A.O., Angal, S., Lowe, P.A., Chan, M. and Hill, C.R. 1988. Scale-up of the recovery and reactivation of recombinant proteins. Biochem. Soc. Trans. 16:112–115.

    CAS  PubMed  Google Scholar 

  5. Hinnen, A., Meyhack, B., and Heim, J. 1989. Heterologous gene expression in yeast, p. 193–213. In: Yeast Genetic Engineering (P. J. Barr, A. J. Brake, P. Valenzuela (Eds.). Butterworths, In press.

    Google Scholar 

  6. Sedivy, J.M. 1988. New genetic methods for mammalian cells. Bio/ Technology 6:1192–1196.

    CAS  Google Scholar 

  7. Markussen, J., Diers, I., Hougaard, P., Langkjaer, L., Norris, K., Snel, L., Sorensen, A.R., Sorensen, E., and Voigt, H.O. 1988. Soluble, prolonged-acting insulin derivatives. III. Degree of protraction, crystallizability, and chemical stability of insulins substituted in positions A21, B13, B23, B27 and B30. Protein Engineering 2:157–166.

    CAS  PubMed  Google Scholar 

  8. Schein, C.H. and Noteborn, M.H.M. 1988. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Nature Biotechnology 6:291–294.

    CAS  Google Scholar 

  9. Haase-Pettingell, C.A. and King, J. 1988. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation. J. Biol. Chem. 263:4977–4983.

    CAS  PubMed  Google Scholar 

  10. Sturtevant, J.M., Yu, M.H., Haase-Pettingell, C.A. and King, J. 1989. Thermostability of temperature-sensitive folding mutants of the P22 tailspike protein. J. Biol. Chem. 264:10693–10698.

    CAS  PubMed  Google Scholar 

  11. Bishai, W.R., Rappuoli, R. and Murphy, J.R. 1987. High-level expression of a proteolytically sensitive diphtheria toxin fragment in Escherichia coli, J. Bacteriol. 169:5140–5151.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Piatak, M., Lane, J.A., Laird, W., Bjorn, M.J., Wang, A., and Williams, M. 1988. Expression of soluble and fully functional ricin A chain in Escherichia coli is temperature-sensitive. J. Biol. Chem. 263:4837–4843.

    CAS  PubMed  Google Scholar 

  13. Squires, C.H., Childs, J., Eisenberg, S.P., Polverini, P.J. and Sommer, A. 1988. Production and characterization of human basic fibroblast growth factor from Escherichia coli. J. Biol. Chem. 263:16297–16302.

    CAS  PubMed  Google Scholar 

  14. Takagi, H., Morinaga, Y., Tsuchiya, M., Ikemura, H., and Inouye, M. 1988. Control of folding of proteins secreted by a high expression secretion vector, pIN-III-ompA: 16-fold increase in production of active subtilisin E in Escherichia coli. Nature Biotechnology 6:948–950.

    CAS  Google Scholar 

  15. Sidler, W., Niederer, E., Suter, F. and Zuber, H. 1986. The primary structure of Bacillus cereus neutral proteinase and comparison with thermolysin and Bacillus subtilis neutral proteinase. Biol. Chem. Hoppe-Seyler 367:643–657.

    CAS  PubMed  Google Scholar 

  16. King, J. 1989. Deciphering the rules of protein folding. Chem. Eng. News 67(15):32–54.

    CAS  Google Scholar 

  17. Privalov, P.L. 1979. Stability of proteins, small globular proteins. Adv. Protein Chem. 33:167–241.

    CAS  PubMed  Google Scholar 

  18. Pace, C.N., Shirley, B.A., and Thomson, J.A. 1989. Measuring the conformational stability of a protein, p. 311–330. In: Protein Structure, a practical approach. Creighton, T. E. (Ed.), IRL Press, Oxford.

    Google Scholar 

  19. Nover, L., and Scharf, K.D. 1984. Synthesis, modification and structural binding of heat-shock proteins in tomato cell culture. Eur. J. Biochem. 139:303–313.

    CAS  PubMed  Google Scholar 

  20. Nguyen, V.T., Morange, M., and Bensaude, O. 1989. Protein denaturation during heat shock and related stress. Escherichia coli β-galactosidase and Photinus pyralis luciferase inactivation in mouse cells. J. Biol. Chem. 264:10487–10492.

    CAS  PubMed  Google Scholar 

  21. White, J.H. and Richardson, C.C. 1988. Gene 19 of bacteriophage T7. Overexpression, purification, and characterization of its product. J. Biol. Chem. 263:2469–2476.

    CAS  PubMed  Google Scholar 

  22. McCamen, M.T. 1989. Fragments of prochymosin produced in Escherichia coli form insoluble inclusion bodies. J. Bact. 171:1225–1227.

    Google Scholar 

  23. Mark, D.F., Lu, S.D., Creasey, A.A., Yamamoto, R. and Lin, L.S. 1984. Site-specific mutagenesis of the human fibroblast interferon gene. Proc. Natl. Acad. Sci. USA 81:5662–5666.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Evans, P.A., Dobson, C.M., Kautz, R.A., Hatfull, G. and Fox, R.O. 1987. Proline isomerism in staphylococcal nuclease characterized by NMR and site-directed mutagenesis. Nature 329:266–268.

    CAS  PubMed  Google Scholar 

  25. Levitt, M. 1981. Effect of proline residues on protein folding. J. Mol. Biol. 145:251–263.

    CAS  PubMed  Google Scholar 

  26. Wood, L.C., Muthukrishnan, K., White, T.B., Ramdas, L., and Nall, B.T. 1988. Construction and characterization of mutant iso-2-cytochromes c with replacement of conserved prolines. Biochem. 27:8554–8561.

    CAS  Google Scholar 

  27. Nagai, K., Thøgersen, H.C., and Luisi, B.F. 1988. Refolding and crystallographic studies of eukaryotic proteins produced in Escherichia coli. Biochem. Soc. Trans. 16:108–110.

    CAS  PubMed  Google Scholar 

  28. Nagai, K. and Thøgersen, H.C. 1987. Synthesis and sequence specific proteolysis of hybrid proteins produced in Escherichia coli. Meth. Enzym. 153:461–481.

    CAS  PubMed  Google Scholar 

  29. Dykes, C.W., Brookless, A.B., Coomber, B.A., Noble, S.A., Humber, D.C., and Hobden, A.N. 1988. Expression of atrial natriuretic factor as a cleavable fusion protein with chloramphenicol acetyltransferase in Escherichia coli. Eur. J. Biochem. 174:411–416.

    CAS  PubMed  Google Scholar 

  30. Beck, Y., Bartfeld, D., Yavin, Z., Levanon, A., Gorecki, M., and Hartman, J.R. 1988. Efficient production of active human manganese superoxide dismutase in Escherichia coli. Nature Biotechnology 6:930–935.

    CAS  Google Scholar 

  31. Schülke, N., and Schmid, F.X. 1988. Effect of glycosylation on the mechanism of renaturation of invertase from yeast. J. Biol. Chem. 263:8832–8837.

    PubMed  Google Scholar 

  32. Chung, K., Walter, P., Aponte, G., and Moore, H.H. 1989. Molecular sorting in the secretory pathway. Science 243:192–197.

    CAS  PubMed  Google Scholar 

  33. Randall, L.L., Hardy, S.J.S., and Thom, J.R. 1987. Export of protein: a biochemical view. Ann. Rev. Microbiol. 41:507–541.

    CAS  Google Scholar 

  34. Dinnbier, U., Limpinsel, E., Schmid, R. and Bakker, E.P. 1988. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch. Microbiol. 150:348–357.

    CAS  PubMed  Google Scholar 

  35. Sieker, L.C., Turley, S., LeTrong, I., Stenkamp, R.E., Weller, P.F., and Ackerman, S.J. 1988. Crystallographic characterization of human eosinophil Charcot-Leyden crystals. J. Mol. Biol. 204:489–491.

    CAS  PubMed  Google Scholar 

  36. Racker, E. 1983. Resolution and reconstitution of biological pathways from 1919 to 1984. Federation Proceedings 42:2899–2909.

    CAS  PubMed  Google Scholar 

  37. Holt, C. and Sawyer, L. 1988. Primary and predicted secondary structures of the caseins in relation to their biological functions. Prot. Eng. 2:251–259.

    CAS  Google Scholar 

  38. Meyer, D.I. 1988. Preprotein conformation: the years major theme in translocation studies. TIBS 13:471–474.

    CAS  PubMed  Google Scholar 

  39. Deshaies, R.J., Koch, B.D., and Schekman, R. 1988. The role of stress proteins in membrane biogenesis. TIBS 13:384–388.

    CAS  PubMed  Google Scholar 

  40. Rothman, J.E. and Schmid, S.L. 1986. Enzymatic recycling of clathrin from coated vesicles. Cell 46:5–9.

    CAS  PubMed  Google Scholar 

  41. Goloubinoff, P., Gatenby, A.A., and Lorimer, G.H. 1989. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose biphosphate carboxylase oligomers in Escherichia coli. Nature 337:44–47.

    CAS  PubMed  Google Scholar 

  42. Kikuchi, T., Némethy, G., and Scheraga, H.A. 1988. Prediction of probable pathways of folding in globular proteins. J. Prot. Chem. 7:491–507.

    CAS  Google Scholar 

  43. Okumura, K., Wakayama, H., Miyake, Y., Murayama, K., Miyake, T., Seto, K., Taguchi, H., and Shimabayashi, Y. 1988. Thioredoxin-catalyzed refolding of recombinant protein: refolding of human prourokinase. Agric. Biol. Chem. 52:2969–2972.

    CAS  Google Scholar 

  44. Gleason, F.K. and Holmgren, A. 1988. Thioredoxin and related proteins in procaryotes. FEMS Microbiol. Rev. 54:271–298.

    CAS  Google Scholar 

  45. Freedman, R.B., Hawkins, H.C., Murant, S.J., and Reid, L. 1988. Protein disulphide isomerase: a homologue of thioredoxin implicated in the biosynthesis of secretory proteins. Biochem. Soc. Proc. 16:96–99.

    CAS  Google Scholar 

  46. Freedman, R.B. 1989. Post-translational modification and folding of secreted proteins. Biochem. Soc. Trans. 17:331–335.

    CAS  PubMed  Google Scholar 

  47. Akagi, S., Yamamoto, A., Yoshimori, T., Masaki, R., Ogawa, R. and Tashiro, Y. 1988. Distribution of protein disulfide isomerase in rat hepatocytes. J. Histochem. Cytochem. 36:1533–1542.

    CAS  PubMed  Google Scholar 

  48. Tasanen, K., Parkkonen, T., Chow, L.T., Kivirikko, K.I. and Pihlajaniemi, T. 1988. Characterization of the human gene for a polypeptide that acts both as the β subunit of prolyl 4-hydroxylase and as protein disulfide isomerase. J. Biol. Chem. 263:16218–16224.

    CAS  PubMed  Google Scholar 

  49. Lin, L. and Brandts, J.F. 1984. Involvement of prolines-114 and -117 in the slow refolding phase of ribonuclease A as determined by isomer-specific proteolysis. Biochem. 23:5713–5723.

    CAS  Google Scholar 

  50. Takahashi, N., Hayano, T., and Suzuki, M. 1989. Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 337:473–475.

    CAS  PubMed  Google Scholar 

  51. Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T., and Schmid, F.X. 1989. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337:476–478.

    CAS  PubMed  Google Scholar 

  52. Shieh, B-H., Stamnes, M.A., Seavello, S., Harris, G.L., and Zucker, C.S. 1989. The ninA gene required for visual transduction in Drosophila encodes a homologue of cyclosporin A-binding protein. Nature 338:67–70.

    CAS  PubMed  Google Scholar 

  53. Bulleid, N.J. and Freedman, R.B. 1988. Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature 335:649–651.

    CAS  PubMed  Google Scholar 

  54. Fisher, J.M. and Scheller, R.H. 1988. Prohormone processing and the secretory pathway. J. Biol. Chem. 263:16515–16518.

    CAS  PubMed  Google Scholar 

  55. Langer, B.G., Weisel, J.W., Dinauer, P.A., Nagaswami, C., and Bell, W.R. 1988. Deglycosylation of fibrinogen accelerates polymerization and increases lateral aggregation of fibrin fibers. J. Biol. Chem. 263:15056–15063.

    CAS  PubMed  Google Scholar 

  56. Dubé, S., Fisher, J.W. and Powell, J.S. 1988. Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion, and biological function. J. Biol. Chem. 263:17516–17521.

    PubMed  Google Scholar 

  57. Last, J.A. and Reiser, K.M. 1984. Collagen biosynthesis. Env. Health Perspectives 55:169–177.

    CAS  Google Scholar 

  58. Knight, P. 1989. The carbohydrate frontier. Nature Biotechnology 7:35–42.

    CAS  Google Scholar 

  59. Skerra, A. and Plückthun, A. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240:1038–1041.

    CAS  PubMed  Google Scholar 

  60. Better, M., Chang, C.P., Robinson, R.R., and Horwitz, A.H. 1988. Escherichia coli secretion of an active chimeric antibody fragment. Science 240:1041–1043.

    CAS  PubMed  Google Scholar 

  61. Tomich, P.K. 1988. Streptomyces cloning: Useful recombinant DNA systems and a summation of cloned genes. Antimicrob. Agents and Chemother. 32:1465–1471.

    CAS  Google Scholar 

  62. Adler, L. and Arvidson, S. 1988. Cloning and expression in Escherichia coli of genes encoding a multiprotein complex involved in secretion of proteins from Staphylococcus aureus. J. Bact. 170:5337–5343.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nicaud, J.M., Mackman, N. and Holland, I.B. 1986. Current status of secretion of foreign proteins by microorganisms. J. Biotech. 3:255–270.

    CAS  Google Scholar 

  64. Chang, S. 1987. Engineering for protein secretion in Gram-positive bacteria. Meth. Enzym. 153:507–516.

    CAS  PubMed  Google Scholar 

  65. Palva, I., Lehtovaara, P., Kääriäinen, L., Sibakov, M., Cantell, K., Schein, C.H., Kashiwagi, K., and Weissmann, C. 1983. Secretion of interferon by Bacillus subtitis. Gene 22:229–235.

    CAS  PubMed  Google Scholar 

  66. Schein, C.H., Kashiwagi, K., Fujisawa, A., and Weissmann, C. 1986. Secretion of mature IFN-α2 and accumulation of uncleaved precursor by Bacillus subtitis transformed with a hybrid gene encoding the α-amylase signal sequence fused to the mature IFN-α2 gene. Nature Biotechnology 4:719–725.

    CAS  Google Scholar 

  67. Gieracsh, L.M. 1989. Signal Sequences. Biochem. 28:923–930.

    Google Scholar 

  68. Hsiung, H.M., Cantrell, A., Luirink, J., Oudega, B., Veros, A.J., and Becker, G.W. 1989. Use of bacteriocin release protein in E. coli for excretion of human growth hormone into the culture medium. Nature Biotechnology 7:267–271.

    CAS  Google Scholar 

  69. Li, P., Beckwith, J. and Inouye, H. 1988. Alteration of the amino terminus of the mature sequence of a periplasmic protein can severely affect protein export in Escherichia coli. Proc. Natl. Acad. Sci. 85:7685–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chang, J.Y-H., Pai, R.C., Bennett, W.F., and Bochner, B.R. 1989. Periplasmic secretion of human growth hormone by Escherichia coli. Biochem. Soc. Trans. 17:335–337.

    CAS  PubMed  Google Scholar 

  71. Davis, N.G. and Model, P. 1985. An artificial anchor domain: hydrophobicity suffices to stop transfer. Cell 41:607–614.

    CAS  PubMed  Google Scholar 

  72. Hirst, T.R. and Welch, R.A. 1988. Mechanisms for secretion of extracellular proteins by Gram-negative bacteria. TIBS 13:265–269.

    CAS  PubMed  Google Scholar 

  73. Weiss, J.B., Ray, P.H., and Bassford, P.J. Jr. 1988. Purified SecB protein of Escherichia coli retards folding and promotes membrane translocation of the maltose-binding protein in vitro. Proc. Natl. Acad. Sci. 85:9878–9882.

    Google Scholar 

  74. Akiyama, Y. and Ito, K. 1989. Export of Escherichia coli alkaline phosphatase attached to an integral membrane protein, SecY. J. Biol. Chem. 264:437–442.

    CAS  PubMed  Google Scholar 

  75. Bieker, K.L. and Silhavy, T.J. 1989. PrlA is important for the translocation of exported proteins across the cytoplasmic membrane of Escherichia coli. Proc. Natl. Acad. Sci. 86:968–972.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lazdunski, C.J. 1988. Pore-forming colicins: synthesis, extracellular release, mode of action, immunity. Biochimie 70:1291–1296.

    CAS  PubMed  Google Scholar 

  77. Holland, I.B. 1989. Secretion of Escherichia coli haemolysin. Biochem. Soc. Transact. 17:323–325.

    CAS  Google Scholar 

  78. Blanchin-Roland, S. and Masson, J-M. 1989. Protein secretion controlled by a synthetic gene in Escherichia coli. Protein Eng. 2:473–480.

    CAS  PubMed  Google Scholar 

  79. Georgiou, G., Shuler, M.L. and Wilson, D.B. 1988. Release of periplasmic enzymes and other physiological effects of β-lactamase overproduction in Escherichia coli. Biotech. Bioeng. 32:741–748.

    CAS  Google Scholar 

  80. Uhlén, M. and Abrahmsén, L. 1989. Secretion of recombinant proteins in the culture medium by Escherichia coli and Staphylococcus aureus. Biochem. Soc. Trans. 17:340–341.

    PubMed  Google Scholar 

  81. Lin, L.-N., Hasumi, H., and Brandts, J.F. 1988. Catalysis of proline isomerization during protein folding reactions. Biochim. Biophys. Acta 956:256–266.

    CAS  PubMed  Google Scholar 

  82. Tang, J., Wang, C. and Tsou, C. 1988. Formation of native insulin from the scrambled molecule by protein-disulphide isomerase. Biochem. J. 255:451–455.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Okumura, K., Miyake, Y., Wakayama, H., Miyake, T., Murayama, K., Seto, K., Taguchi, H., and Shimabayashi, Y. 1988. Effects of protein disulfide-isomerase on the refolding of human pro-urokinase cloned and expressed in Escherichia coti. Agric. Biol. Chem. 52:1735–1739.

    CAS  Google Scholar 

  84. Cozzone, A.J. 1988. Protein phosphorylation in prokaryotes. Ann. Rev. Microbiol. 42:97–125.

    CAS  Google Scholar 

  85. Chiang, T.M., Reizer, J., and Beachey, E.H. 1989. Serine and tyrosine protein kinase activities in Streptococcus pyogenes. J. Biol. Chem. 264:2957–2962.

    CAS  PubMed  Google Scholar 

  86. Hoess, A., Arthur, A.K., Wanner, G. and Fanning, E. 1988. Recovery of soluble, biologically active recombinant proteins from total bacterial lysates using ion exchange resin. Nature Biotechnology 6:1214–1217.

    CAS  Google Scholar 

  87. Cheng, Y.E., Kwoh, D., Kwoh, T.J., Soltvedt, B.C. and Zipser, D. 1981. Stabilization of a degradable protein by its overexpression in Escherichia coli. Gene 14:121–130.

    CAS  PubMed  Google Scholar 

  88. van Kimmenade, A., Bond, M.W., Schumacher, J.H., Laquoi, C., and Kastelein, R.A. 1988. Expression, renaturation and purification of recombinant human interleukin 4 from Escherichia coli. Eur. J. Biochem. 173:109–114.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schein, C. Production of Soluble Recombinant Proteins in Bacteria. Nat Biotechnol 7, 1141–1149 (1989). https://doi.org/10.1038/nbt1189-1141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1189-1141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing