Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conditional Suicide System for Containment of Bacteria and Plasmids

Abstract

The design of biological containment systems to be employed in a broad spectrum of bacteria useful in industrial fermentations and in connection with release to the environment is reported. The key element is a gene, hok, encoding a small polypeptide of 52 amino acids that is lethal when expressed in a variety of bacterial species. Constructing combinations of regulatable promoters and this toxin gene has allowed us to design model systems that in simple ways ensure cell survival under controlled conditions (the fermenter), whereas any cells accidentally escaping to the environment, or any other new combination of a bacterium and the toxin-carrying plasmid, will be killed. A specific application of the containment system with respect to deliberate release is based on a fusion between an invertible promoter and the toxin gene. This results in a stochastic induction of the killing function, which will lead to the elimination of the organism as a consequence of competition with related bacteria in the environment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Federal register, Department of Health and Human Services. Part III: Guidelines for research involving recombinant DNA molecules. National Institutes of Health 1986, 16957–16985.

  2. Curtiss, R., III, M., Inouye, Pereira, D., Hsu, J.C., Alexander, L. and Rock, L. 1977. Construction in use of safer bacterial host strains for recombinant DNA research, p. 248–269. In: Molecular cloning of recombinant DNA. Scott, W. A., and Werner, R. (Eds.). Academic Press, New York.

    Google Scholar 

  3. Slater, J.H. 1985. Gene transfer in microbial communities, p. 89–98. In: Engineered organisms in the environment: Scientific issues. Hal-vorson, H., Pramer, D., Rogul (Eds.). ASM, Washington, D.C.

    Google Scholar 

  4. Shapiro, J.A. 1985. Intercellular communication and genetic change in bacterial populations, p. 63–69. In: Engineered organisms in the environment: Scientific issues. Halvorson, H., Pramer, D., Rogul (Eds.). ASM, Washington, D.C.

    Google Scholar 

  5. Gerdes, K., Rasmussen, P.B. and Molin, S. 1986. Unique type of plasmid maintenance function: Postsegregational killing of plasmid-free cells. Proc. Natl. Acad. Sci. USA 83: 3116–3120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gerdes, K., Bech, F.W., Jorgensen, S.T., Lobner-Olesen, A., Rasmus-sen, P.B., Atlung, T., Karlstrom, O., Molin, S. and von Meyenburg, K. 1986. Mechanism of postsegregational killing by the hok gene product of the parE system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J. 5: 2023–2029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rose, J.K. and Yanofsky, C. 1974. Interaction of the operator of the tryptophan operon with represser. Proc. Natl. Acad. Sci. USA 71: 3134–3138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yansura, D.G. and Henner, D.J. 1984. Use of the Escherichia coli lac represser and operator to control gene expression in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 81: 439–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abraham, J.M., Freitag, C.S., Clements, J.R. and Eisenstein, B.I. 1985. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl. Acad. Sci. USA 82: 5724–5727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klemm, P. 1986. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J. 6: 1389–1393.

    Article  Google Scholar 

  11. Casadaban, M. and Cohen, S.N. 1980. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol. 138: 179–207.

    Article  CAS  PubMed  Google Scholar 

  12. Boyer, H.W. and Roulland-Dussoix, D. 1969. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41: 459–472.

    Article  CAS  PubMed  Google Scholar 

  13. Dubnau, D. and Cirigliano, C. 1974. Genetic characterization of recombination-deficient mutants of Bacillus subtilis J. Bacteriol. 117: 488–493.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Simon, R., Priefer, U. and Pühler, A. 1983. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Bio/Technology 1: 784–790.

    Article  CAS  Google Scholar 

  15. Grindsted, J., Saunders, J.R., Ingram, L.C., Sykes, R.B. and Richmond, M.H. 1972. Properties of an R-factor which originated in Pseudomonas aeruginosa 1822. J. Bacteriol. 110: 529–537.

    Google Scholar 

  16. Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62: 293–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Clark, J.D. and Maaloe, O. 1967. DNA replication and the division cycle in Escherichia coli. J. Mol. Biol. 23: 99–112.

    Article  CAS  Google Scholar 

  18. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory.

    Google Scholar 

  19. Sadaie, Y. and Kada, T. 1983. Formation of competent Bacillus subtilis cells. J. Bacteriol. 153: 813–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Promega Notes. 1986. No. 5, p. 1–4. Promega Biotec, Madison USA.

  21. Skogman, G., Nilsson, J. and Gustafsson, P. 1983. The use of a partition locus to increase stability of tryptophan-operon-bearing plasmids in Escherichia coli. Gene 23: 105–115.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molin, S., Klemm, P., Poulsen, L. et al. Conditional Suicide System for Containment of Bacteria and Plasmids. Nat Biotechnol 5, 1315–1318 (1987). https://doi.org/10.1038/nbt1287-1315

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1287-1315

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing