Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde

Abstract

Global climate change has stimulated efforts to reduce CO2 emissions. One approach to addressing this problem is to recycle CO2 directly into fuels or chemicals using photosynthesis. Here we genetically engineered Synechococcus elongatus PCC7942 to produce isobutyraldehyde and isobutanol directly from CO2 and increased productivity by overexpression of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). Isobutyraldehyde is a precursor for the synthesis of other chemicals, and isobutanol can be used as a gasoline substitute. The high vapor pressure of isobutyraldehyde allows in situ product recovery and reduces product toxicity. The engineered strain remained active for 8 d and produced isobutyraldehyde at a higher rate than those reported for ethanol1, hydrogen2 or lipid3 production by cyanobacteria or algae. These results underscore the promise of direct bioconversion of CO2 into fuels and chemicals, which bypasses the need for deconstruction of biomass.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pathway for isobutyraldehyde production.
Figure 2: Isobutyraldehyde production from cyanobacteria.
Figure 3: Isobutyraldehyde production from cyanobacteria with enhanced Rubisco.
Figure 4: Isobutanol production and comparison of various cyanobacterial and algal productivities.

References

  1. Deng, M.D. & Coleman, J.R. Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol. 65, 523–528 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsygankov, A.A., Borodin, V.B., Rao, K.K. & Hall, D.O. H(2) photoproduction by batch culture of Anabaena variabilis ATCC 29413 and its mutant PK84 in a photobioreactor. Biotechnol. Bioeng. 64, 709–715 (1999).

    Article  CAS  Google Scholar 

  3. Huntley, M.E. & Redalje, D.G. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig. Adapt. Strategies Glob. Change 12, 573–608 (2006).

    Article  Google Scholar 

  4. Energy Information Administration. International Energy Outlook 2009. (US Department of Energy, Washington, DC, 2009) http://www.eia.doe.gov/oiaf/ieo/pdf/0484%282009%29.pdf.

  5. Energy Information Administration Greenhouse Gases, Climate Change, and Energy. (US Department of Energy, Washington, DC, 2008) http://www.eia.doe.gov/bookshelf/brochures/greenhouse/greenhouse.pdf.

  6. Ragauskas, A.J. et al. The path forward for biofuels and biomaterials. Science 311, 484–489 (2006).

    Article  CAS  Google Scholar 

  7. Chisti, Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26, 126–131 (2008).

    Article  CAS  Google Scholar 

  8. Dutta, D., De, D., Chaudhuri, S. & Bhattacharya, S.K. Hydrogen production by Cyanobacteria. Microb. Cell Fact. 4, 36 (2005).

    Article  Google Scholar 

  9. Tavano, C.L. & Donohue, T.J. Development of the bacterial photosynthetic apparatus. Curr. Opin. Microbiol. 9, 625–631 (2006).

    Article  CAS  Google Scholar 

  10. Dubbs, J.M. & Tabita, F.R. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. FEMS Microbiol. Rev. 28, 353–376 (2004).

    Article  CAS  Google Scholar 

  11. Wahlund, T.M., Conway, T. & Tabita, F.R. Bioconversion of CO2 to ethanol and other products. Am. Chem. Soc. Div. Fuel Chem. 41, 1403–1406 (1996).

    CAS  Google Scholar 

  12. Tyo, K.E., Zhou, H. & Stephanopoulos, G.N. High-throughput screen for poly-3-hydroxybutyrate in Escherichia coli and Synechocystis sp. strain PCC6803. Appl. Environ. Microbiol. 72, 3412–3417 (2006).

    Article  CAS  Google Scholar 

  13. de la Plaza, M., Fernandez de Palencia, P., Pelaez, C. & Requena, T. Biochemical and molecular characterization of alpha-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. FEMS Microbiol. Lett. 238, 367–374 (2004).

    CAS  PubMed  Google Scholar 

  14. Bustos, S.A. & Golden, S.S. Light-regulated expression of the psbD gene family in Synechococcus sp. strain PCC 7942: evidence for the role of duplicated psbD genes in cyanobacteria. Mol. Gen. Genet. 232, 221–230 (1992).

    CAS  PubMed  Google Scholar 

  15. Golden, S.S., Brusslan, J. & Haselkorn, R. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol. 153, 215–231 (1987).

    Article  CAS  Google Scholar 

  16. Atsumi, S., Hanai, T. & Liao, J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008).

    Article  CAS  Google Scholar 

  17. Andersson, C.R. et al. Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods Enzymol. 305, 527–542 (2000).

    Article  CAS  Google Scholar 

  18. Ikawa, M., Sasner, J.J. & Haney, J.F. Inhibition of Chlorella growth by degradation and related products of linoleic and linolenic acids and the possible significance of polyunsaturated fatty acids in phytoplankton ecology. Hydrobiologia 356, 143–148 (1997).

    Article  CAS  Google Scholar 

  19. Watson, G.M. & Tabita, F.R. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Microbiol. Lett. 146, 13–22 (1997).

    Article  CAS  Google Scholar 

  20. Tcherkez, G.G., Farquhar, G.D. & Andrews, T.J. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc. Natl. Acad. Sci. USA 103, 7246–7251 (2006).

    Article  CAS  Google Scholar 

  21. Smith, S.A. & Tabita, F.R. Positive and negative selection of mutant forms of prokaryotic (cyanobacterial) ribulose-1,5-bisphosphate carboxylase/oxygenase. J. Mol. Biol. 331, 557–569 (2003).

    Article  CAS  Google Scholar 

  22. Woodrow, I.E. & Berry, J.A. Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 533–594 (1988).

    Article  CAS  Google Scholar 

  23. John Andrews, T. & Whitney, S.M. Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants. Arch. Biochem. Biophys. 414, 159–169 (2003).

    Article  CAS  Google Scholar 

  24. Suzuki, Y. et al. Increased Rubisco content in transgenic rice transformed with the 'Sense' rbcS Gene. Plant Cell Physiol. 48, 626–637 (2007).

    Article  CAS  Google Scholar 

  25. Whitney, S.M. & Andrews, T.J. Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco. Proc. Natl. Acad. Sci. USA 98, 14738–14743 (2001).

    Article  CAS  Google Scholar 

  26. Miyagawa, Y., Tamoi, M. & Shigeoka, S. Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat. Biotechnol. 19, 965–969 (2001).

    Article  CAS  Google Scholar 

  27. Ma, W., Shi, D., Wang, D., Wei, L. & Chen, H. Exogenous expression of the wheat chloroplastic fructose-1,6-bisphosphatase gene enhances photosynthesis in the transgenic cyanobacterium, Anabaena PCC7120. J. Appl. Phycol. 17, 273–280 (2005).

    Article  CAS  Google Scholar 

  28. Atsumi, S. et al. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl. Microbiol. Biotechnol. published online, doi:10.1007/s00253-009-2085-6 (16 July 2009).

  29. Sulzenbacher, G. et al. Crystal structure of E.coli alcohol dehydrogenase YqhD: evidence of a covalently modified NADP coenzyme. J. Mol. Biol. 342, 489–502 (2004).

    Article  CAS  Google Scholar 

  30. Happe, T., Schutz, K. & Bohme, H. Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J. Bacteriol. 182, 1624–1631 (2000).

    Article  CAS  Google Scholar 

  31. Laurinavichene, T., Tolstygina, I. & Tsygankov, A. The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J. Biotechnol. 114, 143–151 (2004).

    Article  CAS  Google Scholar 

  32. Phlips, E.J. & Mitsui, A. Role of light intensity and temperature in the regulation of hydrogen photoproduction by the marine cyanobacterium Oscillatoria sp. strain Miami BG7. Appl. Environ. Microbiol. 45, 1212–1220 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ivleva, N.B., Bramlett, M.R., Lindahl, P.A. & Golden, S.S. LdpA: a component of the circadian clock senses redox state of the cell. EMBO J. 24, 1202–1210 (2005).

    Article  CAS  Google Scholar 

  34. Yang, Y.T., Peredelchuk, M., Bennett, G.N. & San, K.Y. Effect of variation of Klebsiella pneumoniae acetolactate synthase expression on metabolic flux redistribution in Escherichia coli. Biotechnol. Bioeng. 69, 150–159 (2000).

    Article  CAS  Google Scholar 

  35. Kiritani, K., Narise, S. & Wagner, R.P. The dihydroxy acid dehydratase of Neurospora crassa. J. Biol. Chem. 241, 2042–2046 (1966).

    CAS  PubMed  Google Scholar 

  36. Cioffi, E.A., Shaw, K.J., Bailey, W.F. & Berg, C.M. Improved synthesis of the sodium salt of DL-alpha, beta-dihydroxyisovaleric acid. Anal. Biochem. 104, 485–488 (1980).

    Article  CAS  Google Scholar 

  37. Whitman, W. & Tabita, F.R. Inhibition of D-ribulose 1,5-bisphosphate carboxylase by pyridoxal 5′-phosphate. Biochem. Biophys. Res. Commun. 71, 1034–1039 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US Department of Energy (DOE) grant DE-FG02-07ER64490 and the UCLA-DOE Institute for Genomics and Proteomics. We thank S.S. Golden (University of California, San Diego) for S. elongatus PCC7942 and pAM2991, F.R. Tabita (Ohio State University, Columbus) for the rbcLS plasmid and L.A. Sherman (Purdue University) for helpful advice.

Author information

Authors and Affiliations

Authors

Contributions

S.A. designed and performed research, analyzed data and wrote the manuscript; W.H. designed and performed research and analyzed data; J.C.L. designed and coordinated research, and wrote the manuscript.

Corresponding author

Correspondence to James C Liao.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–3, Supplementary Tables 1,2 and Supplementary Notes (PDF 553 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atsumi, S., Higashide, W. & Liao, J. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27, 1177–1180 (2009). https://doi.org/10.1038/nbt.1586

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1586

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing