Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana

Abstract

We introduced the Escherichia coli glycolate catabolic pathway into Arabidopsis thaliana chloroplasts to reduce the loss of fixed carbon and nitrogen that occurs in C3 plants when phosphoglycolate, an inevitable by-product of photosynthesis, is recycled by photorespiration. Using step-wise nuclear transformation with five chloroplast-targeted bacterial genes encoding glycolate dehydrogenase, glyoxylate carboligase and tartronic semialdehyde reductase, we generated plants in which chloroplastic glycolate is converted directly to glycerate. This reduces, but does not eliminate, flux of photorespiratory metabolites through peroxisomes and mitochondria. Transgenic plants grew faster, produced more shoot and root biomass, and contained more soluble sugars, reflecting reduced photorespiration and enhanced photosynthesis that correlated with an increased chloroplastic CO2 concentration in the vicinity of ribulose-1,5-bisphosphate carboxylase/oxygenase. These effects are evident after overexpression of the three subunits of glycolate dehydrogenase, but enhanced by introducing the complete bacterial glycolate catabolic pathway. Diverting chloroplastic glycolate from photorespiration may improve the productivity of crops with C3 photosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The E.coli glycolate catabolic pathway (red) superimposed on plant photorespiration (black).
Figure 2: Activities of the bacterial enzymes in chloroplast extracts.
Figure 3: Growth parameters of transgenic (DEF, GT-DEF) and wild-type (WT) lines.
Figure 4: Reduction of the photorespiratory flow in transgenic plants (DEF, GT-DEF) compared to the wild type (WT).

Similar content being viewed by others

References

  1. Mann, C.C. Genetic engineers aim to soup up crop photosynthesis. Science 283, 314–316 (1999).

    CAS  PubMed  Google Scholar 

  2. Laing, W.A., Ogren, W.L. & Hageman, R.H. Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2, and ribulose 1,5-diphosphate carboxylase. Plant Physiol. 54, 678–685 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Leegood, R.C., Lea, P.J., Adcock, M.D. & Häusler, R.E. The regulation and control of photorespiration. J. Exp. Bot. 46, 1397–1414 (1995).

    CAS  Google Scholar 

  4. Tolbert, N.E. The C2 oxidative photosynthetic carbon cycle. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 1–25 (1997).

    CAS  PubMed  Google Scholar 

  5. Arp, W.J., Van Mierlo, J.E.M., Berendse, F. & Snijders, W. Interactions between elevated CO2 concentration, nitrogen and water: Effects on growth and water use of six perennial plant species. Plant Cell Environ. 21, 1–11 (1998).

    CAS  Google Scholar 

  6. Kimball, B.A. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior obeservations. Agron. J. 75, 779–788 (1983).

    Google Scholar 

  7. Wingler, A., Lea, P.J., Quick, W.P. & Leegood, R.C. Photorespiration: metabolic pathways and their role in stress protection. Phil. Trans. R. Soc. Lond. B 355, 1517–1529 (2000).

    CAS  Google Scholar 

  8. Campbell, W.J. & Ogren, W.L. Glyoxylate inhibition of ribulosebisphosphate carboxylase-oxygenase: Activation in intact, lysed and reconstituted chloroplasts. Photosynth. Res. 23, 257–268 (1990).

    CAS  PubMed  Google Scholar 

  9. Givan, C.V. & Kleczkowski, L.A. The enzymic reduction of glyoxylate and hydroxypyruvate in leaves of higher plants. Plant Physiol. 100, 552–556 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Medrano, H. et al. Improving plant production by selection for survival at low CO2 concentrations. J. Exp. Bot. 46, 1389–1396 (1995).

    CAS  Google Scholar 

  11. Somerville, C.R. The analysis of photosynthetic carbon dioxide fixation and photorespiration by mutant selection. Oxford Surveys Plant Mol. Cell Biol. 1, 103–131 (1984).

    CAS  Google Scholar 

  12. Somerville, C.R. & Ogren, W.L. Genetic modification of photorespiration. Trends Biochem. Sci. 7, 171–174 (1982).

    CAS  Google Scholar 

  13. Kozaki, A. & Takeba, G. Photorespiration protects C3 plants from photooxidation. Nature 384, 557–560 (1996).

    CAS  Google Scholar 

  14. Lord, J.M. Glycolate oxidoreductase in Escherichia coli. Biochim. Biophys. Acta 267, 227–237 (1972).

    CAS  PubMed  Google Scholar 

  15. Pellicer, M.T., Badia, J., Aguilar, J. & Baldoma, L. glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein. J. Bacteriol. 178, 2051–2059 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Eisenhut, M. et al. The plant-like C2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol. 142, 333–342 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lechtenberg, B., Schubert, D., Forsbach, A., Gils, M. & Schmidt, R. Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant J. 34, 507–517 (2003).

    CAS  PubMed  Google Scholar 

  18. Novitskaya, L., Trevanion, S.J., Driscoll, S., Foyer, C.H. & Noctor, G. How does photorespiration modulate leaf amino acid contents? A dual approach through modelling and metabolite analysis. Plant Cell Environ. 25, 821–835 (2002).

    CAS  Google Scholar 

  19. Goyal, A. & Tolbert, N.E. Association of glycolate oxidation with photosynthetic electron transport in plant and algal chloroplasts. Proc. Natl. Acad. Sci. USA 93, 3319–3324 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Atkin, O.K., Evans, J.R. & Siebke, K. Relationship between the inhibition of leaf respiration by light and enhancement of leaf dark respiration following light treatment. Aust. J. Plant Physiol. 25, 437–443 (1998).

    Google Scholar 

  21. Häusler, R.E., Kleines, M., Uhrig, H., Hirsch, H.J. & Smets, H. Overexpression of phosphoenolpyruvate carboxylase from Corynebacterium glutamicum lowers the CO2 compensation point (Γ*) and enhances dark and light respiration in transgenic potato. J. Exp. Bot. 50, 1231–1242 (1999).

    Google Scholar 

  22. Whitney, S.M., Baldet, P., Hudson, G.S., Andrews, T.J. & Form, I. Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J. 26, 535–547 (2001).

    CAS  PubMed  Google Scholar 

  23. Zhu, X-G., Portis, A.R. & Long, S.P. Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ. 27, 155–165 (2004).

    CAS  Google Scholar 

  24. Edwards, G.E., Franceschi, V.R. & Voznesenskaya, E.V. Single cell C4 photosynthesis versus dual-cell (Kranz) paradigm. Annu. Rev. Plant Biol. 55, 173–196 (2004).

    CAS  PubMed  Google Scholar 

  25. Häusler, R.E., Hirsch, H.J., Kreuzaler, F. & Peterhansel, C. Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. J. Exp. Bot. 53, 591–607 (2002).

    PubMed  Google Scholar 

  26. Leegood, R.C. C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants. J. Exp. Bot. 53, 581–590 (2002).

    CAS  PubMed  Google Scholar 

  27. Reumann, S. & Weber, A.P.M. Plant peroxisomes respire in the light: some gaps of the photorespiratory C2 cycle have become filled–others remain. Biochim. Biophys. Acta–Mol. Cell Res. 1763, 1496–1510 (2006).

    CAS  Google Scholar 

  28. Long, S.P., Zhu, X-G., Naidu, S.L. & Ort, D.R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 29, 315–330 (2006).

    CAS  PubMed  Google Scholar 

  29. Von Caemmerer, S. C4 photosynthesis in a single C3 cell is theoretically inefficient but may ameliorate internal CO2 diffusion limitations of C3 leaves. Plant Cell Environ. 26, 1191–1197 (2003).

    CAS  Google Scholar 

  30. Ku, S.B. & Edwards, G.E. Oxygen inhibition of photosynthesis. I. Temperature dependence and relation to O2/CO2 solubility ratio. Plant Physiol. 59, 986–990 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kruger, E.L. & Volin, J.C. Reexamining the empirical relation between plant growth and leaf photosynthesis. Funct. Plant Biol. 33, 421–429 (2006).

    PubMed  Google Scholar 

  32. Long, S.P., Ainsworth, E.A., Leakey, A.D., Nosberger, J. & Ort, D.R. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 1918–1921 (2006).

    CAS  PubMed  Google Scholar 

  33. Paul, M.J. & Pellny, T.K. Carbon metabolite feedback regulation of leaf photosynthesis and development. J. Exp. Bot. 54, 539–547 (2003).

    CAS  PubMed  Google Scholar 

  34. Lefebvre, S., Lawson, T., Zakhleniuk, O.V., Lloyd, J.C. & Raines, C.A. Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol. 138, 451–460 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Miyagawa, Y., Tamoi, M. & Shigeoka, S. Overexpression of a cyanobacterial fructose-1,6-sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat. Biotechnol. 19, 965–969 (2001).

    CAS  PubMed  Google Scholar 

  36. Tolbert, N.E., Yamazaki, R.K. & Oeser, A. Localization and properties of hydroxypyruvate and glyoxylate reductases in spinach leaf particles. J. Biol. Chem. 245, 5129–5136 (1970).

    CAS  PubMed  Google Scholar 

  37. Kisaki, T. & Tolbert, N.E. Glycolate and glyoxylate metabolism by isolated peroxisomes or chloroplasts. Plant Physiol. 44, 242–250 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Oliver, D.J. Role of glycine and glyoxylate decarboxylation in photorespiratory CO2 release. Plant Physiol. 68, 1031–1034 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zelitch, I. The photooxidation of glyoxylate by envelope-free spinach chloroplasts and its relation to photorespiration. Arch. Biochem. Biophys. 150, 698–707 (1972).

    CAS  PubMed  Google Scholar 

  40. Igamberdiev, A.U. & Lea, P.J. The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms. Phytochemistry 60, 651–674 (2002).

    CAS  PubMed  Google Scholar 

  41. Herman, P.L., Ramberg, H., Baack, R.D., Markwell, J. & Osterman, J.C. Formate dehydrogenase in Arabidopsis thaliana: overexpression and subcellular localization in leaves. Plant Sci. 163, 1137–1145 (2002).

    CAS  Google Scholar 

  42. Koncz, C. & Schell, J. The promoter of TL-DNA gene 5 controls the tissue-spezific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383–396 (1986).

    CAS  Google Scholar 

  43. Reichel, C. et al. Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono- and dicotyledonous plant cells. Proc. Natl. Acad. Sci. USA 93, 5888–5893 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Clough, S.J. & Bent, A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    CAS  PubMed  Google Scholar 

  45. Goyal, A., Betsche, T. & Tolbert, N.E. Isolation of intact chloroplasts from Dunaliella tertiolecta. Plant Physiol. 88, 543–546 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gutheil, W.G. A sensitive equilibrium-based assay for D-lactate using D-lactate dehydrogenase: application to penicillin-binding protein/DD-carboxypeptidase activity assays. Anal. Biochem. 259, 62–67 (1998).

    CAS  PubMed  Google Scholar 

  47. Gotto, A.M. & Kornberg, H.L. The metabolism of C2 compounds in micro-organisms. 7. Preparation and properties of crystalline tartronic semialdehyde reductase. Biochem. J. 81, 273–284 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stitt, M., Lilley, R., Gerhardt, R. & Heldt, H. Determination of metabolite levels in specific cells and subcellular compartments of plant leaves. Methods Enzymol. 174, 518–552 (1989).

    CAS  Google Scholar 

  49. Wagner, C., Sefkow, M. & Kopka, J. Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62, 887–900 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a PhD scholarship from the Egyptian government to R.K. and grants from the Deutsche Forschungsgemeinschaft and Bayer CropScience to C.P. Thanks to Martin Parry, Alf Keys, Rainer Häusler, Veronica Maurino, Susanne von Caemmerer, John Evans, Margrit Frentzen, Dagmar Weier, Thomas Rademacher, Burkhard Schmidt and Nikolaus Schlaich for helpful discussion of this work and technical support.

Author information

Authors and Affiliations

Authors

Contributions

R.K. established the transgenic lines. R.K. and M.N. conducted most of the physiological experiments. K.T. contributed to physiological and growth measurements. R.B. cloned the genes and established initial transgenic lines. H.-J.H. helped to establish enzymatic assays and metabolite measurements. R.R. established techniques for the estimation of photorespiration. N.S. and B.S. determined the chromosomal T-DNA integration sites. C.P. and F.K. designed the approach. C.P. supervised the work and wrote the manuscript.

Corresponding author

Correspondence to Christoph Peterhänsel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Multiplex PCR for the detection of plants containing all five open reading frames for the installation of the E. coli glycolate pathway in Arabidopsis chloroplasts. (PDF 41 kb)

Supplementary Fig. 2

Additional growth parameters of wild-type and transgenic lines. (PDF 16 kb)

Supplementary Fig. 3

Glycine and serine concentrations in leaves of wild-type and transgenic lines. (PDF 10 kb)

Supplementary Fig. 4

Typical measuring profile for the determination of the postillumination CO2 burst (PIB). (PDF 24 kb)

Supplementary Fig. 5

Typical measuring profile for the determination of the CO2 compensation point Γ* and the dark respiration rate in the light (Rd). (PDF 77 kb)

Supplementary Table 1

Genomic integration sites of the T-DNAs containing the listed constructs. (PDF 9 kb)

Supplementary Note

Generation and selection of transgenic lines used in this study. (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kebeish, R., Niessen, M., Thiruveedhi, K. et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25, 593–599 (2007). https://doi.org/10.1038/nbt1299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing