Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli

Abstract

Bacterial protein secretion is important in the life cycles of most bacteria, in which it contributes to the formation of pili and flagella and makes available extracellular enzymes to digest polymers for nutritional purposes and toxins to kill host cells in infections of humans, animals and plants. It is generally accepted that nonpathogenic laboratory strains of Escherichia coli, particularly K12 strains, do not secrete proteins into the extracellular medium under routine growth conditions1,2. In this study, we report that commonly used laboratory strains secrete YebF, a small (10.8 kDa in the native form), soluble endogenous protein into the medium, challenging the status quo view that laboratory strains do not secrete proteins to the medium. We further show that 'passenger' proteins linked to the carboxyl end of YebF are efficiently secreted. The function of YebF is unknown, but its use as a carrier for transgenic proteins provides a tool to circumvent toxicity and other contamination issues associated with protein production in E. coli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subcellular localization and secretion of E. coli YebF.
Figure 2: Immunoblotting of YebF and CRP in HB101 (pYebFH6/MS) cells and the medium.
Figure 3: Examination of outer membrane leakage in E. coli cells expressing YebF protein.
Figure 4: YebF as the carrier protein to produce hIL2 or α-amylase in the medium.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Pugsley, A.P. & Francetic, O. Protein secretion in Escherichia coli K-12: dead or alive? Cell Mol. Life Sci. 54, 347–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Shokri, A., Sanden, A.M. & Larsson, G. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl. Microbiol. Biotechnol. 60, 654–664 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Brokx, S.J. et al. Genome-wide analysis of lipoprotein expression in Escherichia coli MG1655. J. Bacteriol. 186, 3254–3258 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ohdan, K. et al. Characteristics of two forms of alpha-amylases and structural implication. Appl. Environ. Microbiol. 65, 4652–4658 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chang, A.C.Y. & Cohen, S.N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134, 1141–1156 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Francetic, O., Belin, D., Badaut, C. & Pugsley, A.P. Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion. EMBO J. 19, 6697–6703 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He, S.Y., Lindeberg, M., Chatterjee, A.K. & Collmer, A. Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu. Proc. Natl. Acad. Sci. USA 88, 1079–1083 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Poquet, I., Faucher, D. & Pugsley, A.P. Stable periplasmic secretion intermediate in the general secretory pathway of Escherichia coli. EMBO J. 12, 271–278 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stathopoulos, C. et al. Secretion of virulence determinants by the general secretory pathway in gram-negative pathogens: an evolving story. Microbes Infect. 2, 1061–1072 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Francetic, O. & Pugsley, A.P. The cryptic general secretory pathway (gsp) operon of Escherichia coli K-12 encodes functional proteins. J. Bacteriol. 178, 3544–3549 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thanassi, D.G. & Hultgren, S.J. Multiple pathways allow protein secretion across the bacterial outer membrane. Curr. Opin. Cell Biol. 12, 420–430 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Lattemann, C.T., Maurer, J., Gerland, E. & Meyer, T.F. Autodisplay: functional display of active β-lactamase on the surface of Escherichia coli by the AIDA-I autotransporter. J. Bacteriol. 182, 3726–3733 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Robb, R.J. Interleukin 2: the molecule and its function. Immunol. Today 5, 203–209 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. Masui, Y. et al. Microheterogeneity of recombinant products: human interleukin 1α and 1β. in Current Communications in Molecular Biology—Therapeutic Peptides and Proteins. (eds. Marshak, D. and Liu, D.) 167–172 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  15. Sambrook, J. & Russell, D.W. Molecular cloning, a laboratory manual, edn. 3 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001).

    Google Scholar 

  16. Strack, B., Lessel, M., Calendar, R. & Lanka, E. A common sequence motif, -E-G-Y-A-T-A-, identified within the primase domains of plasmid-encoded I- and P-type DNA primases and the α protein of the Escherichia coli satellite phage P4. J. Biol. Chem. 267, 13062–13072 (1992).

    CAS  PubMed  Google Scholar 

  17. Tabor, S., Huber, H.E. & Richardson, C.C. Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J. Biol. Chem. 262, 16212–16223 (1987).

    CAS  PubMed  Google Scholar 

  18. Zhang, G. & Weiner, J.H. CTAB-mediated purification of PCR products. Biotechniques 29, 982–986 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Neu, H.C. & Heppel, L.A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J. Biol. Chem. 240, 3685–3692 (1965).

    CAS  PubMed  Google Scholar 

  20. Schagger, H. & von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Lei, H. et al. Induction of potent antitumor response by vaccination with tumor lysate-pulsed macrophages engineered to secrete macrophage colony-stimulating factor and interferon-g. Gene Therapy 7, 707–713 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.H.W. is a Canada Research Chair in Membrane Biochemistry. This work was supported by the Canadian Institutes of Health Research and the Alberta Heritage Foundation for Medical Research. We thank the following people for their valuable contribution to this study. Len Wiebe and Aihua Zhou provided technical assistance with the hIL-2 bioassay. Chris Bleackley, Irene Shostak and Jonathan Hooton provided the materials and methods for the hIL-2 bioassay. Lorne Burke and Paul Semchuk provided technical support for HPLC and mass spectrometry. We thank Biomira for kindly allowing us to use plasmid pBM806.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel H Weiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Brokx, S. & Weiner, J. Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli. Nat Biotechnol 24, 100–104 (2006). https://doi.org/10.1038/nbt1174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing