Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting cytokines to inflammation sites

Abstract

To increase the half-life of a cytokine and target its activation specifically to disease sites, we have engineered a latent cytokine using the latency-associated protein (LAP) of transforming growth factor-β1 (TGF-β1) fused via a matrix metalloproteinase (MMP) cleavage site to interferon (IFN)-β at either its N or C terminus. The configuration LAP-MMP-IFN-β resembles native TGF-β and lacks biological activity until cleaved by MMPs, whereas the configuration IFN-β-MMP-LAP is active. LAP provides for a disulfide-linked shell hindering interaction of the cytokine with its cellular receptors, conferring a very long half-life of 55 h in vivo. Mutations of the disulfide bonds in LAP abolish this latency. Samples of cerebrospinal fluid (CSF) or synovial fluid from patients with inflammatory diseases specifically activate the latent cytokine, whereas serum samples do not. Intramuscular injection in arthritic mice of plasmid DNA encoding these constructs demonstrated a greater therapeutic effect of the latent as compared to the active forms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of fusion proteins and their putative folding.
Figure 2: Detection and characterization of fusion proteins by immunoprecipitation.
Figure 3: Kinetics of IFN activity after incubation of cell supernatants in medium alone or with synovial fluid from rheumatoid arthritis patients.
Figure 4: Affinity chromatography of LAP-IFN-β and pharmacokinetics.
Figure 5: Inhibition of established collagen-induced arthritis by DNA injection with LAP-IFN-β.

Similar content being viewed by others

Notes

  1. *Note: In Figure 3b, the zero time point for IFN-LAP + RASF was omitted. This mistake has been corrected in the HTML version and will appear correctly in print. The correction has been appended to the PDF version available online.

References

  1. Waldmann, T.A. & Tagaya, Y. The multifaceted regulation of IL-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu. Rev. Immunol. 17, 19–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Taniguchi, T. Regulation of cytokine gene expression. Annu. Rev. Immunol. 6, 439–464 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Taipale, J. & Keski-Oja, J. Growth factors in the extracellular matrix. FASEB J. 11, 51–59 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Khalil, N. TGF-β: from latent to active. Microbes Infect. 1, 1255–1263 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Aulitzky, W., Schuler, M., Peschel, C. & Huber, C. Interleukins: clinical pharmacology and therapeutic use. Drugs 48, 667–677 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Gutterman, J. Cytokine therapeutics: lessons from IFN α. Proc. Natl. Acad. Sci. USA 91, 1198–1205 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Golab, J. & Zagozdon, R. Antitumor effects of IL-12 in pre-clinical and early clinical studies. Int. J. Mol. Med. 3, 537–544 (1999).

    CAS  PubMed  Google Scholar 

  8. Atkins, M. et al. High dose recombinant IL-2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Margolin, K.A. Interleukin-2 in the treatment of renal cancer. Semin. Oncol. 27, 194–203 (2000).

    CAS  PubMed  Google Scholar 

  10. Lode, H.N., Xiang, R., Becker, J.C., Gillies, S.D. & Reisfeld, R.A. Immunocytokines: a promising approach to cancer immunotherapy. Pharmacol. Ther. 80, 277–292 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Han, B., Hall, F.L. & Nimni, M.E. Refolding of a recombinant collagen-targeted TGF β 2 fusion protein expressed in E. coli. Protein Expr. Purif. 11, 169–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Gordon, E.M. et al. Capture and expansion of bone marrow-derived mesenchymal progenitor cells with a TGF β1-von Willebrand's factor fusion protein for retrovirus-mediated delivery of coagulation factor IX. Hum. Gene Ther. 8, 1385–1394 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Sanderson, N. et al. Hepatic expression of mature TGF-β1 in transgenic mice results in multiple tissue lesions. Proc. Natl. Acad. Sci. USA 92, 2572–2576 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brunner, A. et al. Site-directed mutagenesis of glycosylation sites in the transforming growth factor-β 1 (TGF β 1) and TGF-β 2 (414) precursors and of cysteine residues within mature TGF β 1: effects on secretion and bioactivity. Mol. Endocrinol. 6, 1691–1700 (1992).

    CAS  PubMed  Google Scholar 

  15. Brunner, A., Marquardt, H., Malacko, A., Lioubin, M. & Purchio, A. Site-directed mutagenesis of cysteine residues in the pro region of the TGF β 1 precursor. J. Biol. Chem. 264, 13660–13664 (1989).

    CAS  PubMed  Google Scholar 

  16. Munger, J.S., Harpel, J.G., Giancotti, F.G. & Rifkin, D.B. Interactions between growth factors and integrins: latent forms of TGF-β are ligands for the integrin αVβ 1. Mol. Cell Biol. 9, 2627–2638 (1998).

    Article  CAS  Google Scholar 

  17. Derynck, R. TGF-β-receptor-mediated signaling. TIBS 19, 548–553 (1994).

    CAS  PubMed  Google Scholar 

  18. Saharinen, J., Taipale, J. & Keski-Oja, J. Association of the small latent TGF-β with an eight cysteine repeat of its binding protein LTBP-1. EMBO J. 15, 245–253 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schultz-Cherry, S., Lawler, J. & Murphy-Ullrich, J.E. The Type 1 repeats of thrombospondin 1 activate latent TGF-β. J. Biol. Chem. 269, 26783–26788 (1994).

    CAS  PubMed  Google Scholar 

  20. Crawford, S.E. et al. Thrombospondin-1 is a major activator of TGF-β 1 in vivo. Cell 93, 1159–1170 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Nunes, I., Gleizes, P.-E., Metz, C.N. & Rifkin, D.B. Latent TGF-β binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent TGF-β. J. Cell Biol. 136, 1151–1163 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kojima, S., Nara, K. & Rifkin, D.B. Requirement for transglutaminase in the activation of latent TGF-β in bovine endothelial cells. J. Cell Biol. 121, 439–448 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 14, 163–176 (2000).

    PubMed  PubMed Central  Google Scholar 

  24. Peng, K.-W., Morling, F.J., Cosset, F.-L., Murphy, G. & Russell, S.J. A gene delivery system activable by disease-associated matrix metalloproteinases. Hum. Gene Ther. 8, 729–738 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Ye, Q.Z., Johnson, L.L., Yu, A.E. & Hupe, D. Reconstructed 19 kDa catalytic domain of gelatinase A is an active proteinase. Biochemistry 34, 4702–4708 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Nagase, H. & Fields, G.B. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40, 399–416 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Saharinen, J., Hyyatiäinen, M., Taipale, J. & Keski-Oja, J. Latent TGF-β binding proteins (LTBPs)-structural extracellular matrix proteins for targeting TGF-β action. Cytokine Growth Factor Rev. 10, 99–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Goldman, M.H., James, D.C., Ison, A.P. & Bull, A.T. Monitoring proteolysis of recombinant human IFN-γ during batch culture of Chinese hamster ovary cells. Cytotechnology 23, 103–111 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Satoh, M., Hosoi, S., Miyaji, H., Itoh, S. & Sato, S. Stable production of recombinant pro-urokinase by human lymphoblastoid Namalwa KJM-1 cells: host-cell dependency of the expressed-protein stability. Cytotechnology 13, 79–88 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Masure, S. et al. Production and characterisation of recombinant active mouse gelatinase B from eukaryotic cells and in vivo effects after intravenous administration. Eur. J. Biochem. 244, 21–30 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Croxford, J.L. et al. Cytokine gene therapy in experimental allergic encephalomyelitis by injection of plasmid DNA-cationic liposome complex into the central nervous system. J. Immunol. 160, 5181–5187 (1998).

    CAS  PubMed  Google Scholar 

  32. Triantaphyllopoulos, K.A., Williams, R.O., Tailor, H. & Chernajovsky, Y. Amelioration of collagen-induced arthritis and suppression of IFN-γ, IL-12, and TNF-α production by IF-β gene therapy. Arth. Rheum. 42, 90–99 (1999).

    Article  CAS  Google Scholar 

  33. Karpusas, M. et al. The crystal structure of human IFN β at 2.2-Å resolution. Biochemistry 94, 11813–11818 (1997).

    CAS  Google Scholar 

  34. Massova, I., Fridman, R. & Mobashery, S. Structural insights into the catalytic domains of human matrix metalloprotease-2 and human matrix metalloprotease-9: implications for substrate specificities. J. Mol. Model. 3, 17–30 (1997).

    Article  CAS  Google Scholar 

  35. Wakefield, L.M. et al. Recombinant latent TGF-β1 has a longer plasma half life in rats than active TGF-β1, and a different tissue distribution. J. Clin. Invest. 86, 1976–1984 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pepinsky, R. et al. Improved pharmacokinetic properties of a polyethylene glycol-modified form of IFN-β-1-a with preserved in vitro bioactivity. J. Pharmacol. Exp. Ther. 297, 1059–1066 (2001).

    CAS  PubMed  Google Scholar 

  37. Han, Z., Boyle, D.L., Manning, A.M. & Firestein, G.S. AP-1 and NF-κB regulation in rheumatoid arthritis and murine collagen-induced arthritis. Autoimmunity 28, 197–208 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. van Meurs, J. et al. Cleavage of aggrecan at the Asn341-Phe342 site coincides with the initiation of collagen damage in murine antigen-induced arthritis: a pivotal role for stromelysin 1 in matrix metalloproteinase activity. Arth. Rheum. 42, 2074–2084 (1999).

    Article  CAS  Google Scholar 

  39. Singer, I. et al. Aggrecanase and metalloproteinase-specific aggrecan neo-epitopes are induced in the articular cartilage of mice with collagen II-induced arthritis. Osteoarth. Cartil. 5, 407–418 (1997).

    Article  CAS  Google Scholar 

  40. Kubota, E., Imamura, H., Kubota, T., Shibata, T. & Murakami, K. Interleukin 1β and stromelysin (MMP3) activity of synovial fluid as possible markers of osteoarthritis in the temporomandibular joint. J. Oral Maxillofac. Surg. 55, 20–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Louis, E. et al. Increased production of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 by inflamed mucosa in inflammatory bowel disease. Clin. Exp. Immunol. 120, 241–246 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baugh, M. et al. Matrix metalloproteinase levels are elevated in inflammatory bowel disease. Gastroenterology 117, 814–822 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Leppert, D. et al. Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. Brain 121, 2327–2334 (1998).

    Article  PubMed  Google Scholar 

  44. Anthony, D.C. et al. Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke. Neuropath. Appl. Neurobiol. 23, 406–415 (1997).

    Article  CAS  Google Scholar 

  45. Libby, P. The interface of atherosclerosis and thrombosis: basic mechanisms. Vasc. Med. 3, 225–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. DeClerck, Y.A. et al. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res. 52, 701–708 (1992).

    CAS  PubMed  Google Scholar 

  47. Wakefield, L. et al. Recombinant TGF-β1 is synthesized as a two-component latent complex that shares some structural features with the native platelet latent TGF-β1 complex. Growth Factors 1, 203–218 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Vodovotz, Y. et al. Regulation of TGF β1 by nitric oxide. Cancer Res. 59, 2142–2149 (1999).

    CAS  PubMed  Google Scholar 

  49. Chernajovsky, Y., Adams, G., Triantaphyllopoulos, K., Ledda, M.F. & Podhajcer, O.L. Pathogenic lymphoid cells engineered to express TGF β1 ameliorate disease in a collagen-induced arthritis model. Gene Ther. 4, 553–559 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Triantaphyllopoulos, K., Croxford, J.L., Baker, D. & Chernajovsky, Y. Cloning and expression of murine IFN β and a TNF α antagonist for retrovirus gene therapy of experimental allergic encephalomyelitis. Gene Ther. 5, 253–263 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Chernajovsky, Y. et al. Efficient constitutive production of human fibroblast interferon by hamster cells transformed with the IFN-β 1 gene fused to an SV40 early promoter. DNA 3, 297–308 (1984).

    Article  CAS  PubMed  Google Scholar 

  52. Ogata, Y., Itoh, Y. & Nagase, H. Steps involved in activation of the pro-matrix metalloprotease 9 (progelatinase B)-tissue inhibitor of metalloproteinases-1 complex by 4-aminophenylmercuric acetate and proteinases. J. Biol. Chem. 270, 18506–18511 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Dreja, H., Annenkov, A. & Chernajovsky, Y. A novel truncated form of human soluble complement receptor 1 delivered by gene therapy prevents and ameliorates collagen-induced arthritis by inhibiting B and T cell responses. Arth. Rheum. 43, 1698–1709 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Multiple Sclerosis Society of Great Britain and Northern Ireland, the Arthritis Research Campaign (UK) and Kinetique Biomedical Research Seed Fund UK. We thank Irene Theoharidou for her expert secretarial assistance, G. Scott and G. Giovannoni for clinical samples, S. Amor for samples from rhesus monkeys, S. Mather and D. Ellison for help with protein iodination, J. Wilson and A. Mustafa for technical help, A. Johnston for the analysis of pharmacokinetic data, L. Layward, D. Willoughby, O.L. Podhajcer and P. Colville-Nash for reviewing the manuscript and H. Nagase for helpful and encouraging discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuti Chernajovsky.

Ethics declarations

Competing interests

G.A., H.D. and Y.C. are shareholders in Stealtnyx Therapeutics, Ltd., which holds patents based on this technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, G., Vessillier, S., Dreja, H. et al. Targeting cytokines to inflammation sites. Nat Biotechnol 21, 1314–1320 (2003). https://doi.org/10.1038/nbt888

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt888

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing