Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Individually addressable parallel peptide synthesis on microchips

Abstract

Miniaturized, spatially addressable microchips of peptides and peptidomimetics are powerful tools for high-throughput biomedical and pharmaceutical research and the advancement of proteomics. Here we report an efficient and flexible method for the parallel synthesis of peptides on individually addressable microchips, using digital photolithography and photogenerated acid in the deprotection step. We demonstrate that we are able to synthesize thousands of peptides in a 1 cm2 area on a microchip using 20 natural amino acids as well as synthetic amino acid analogs, with high stepwise yields and short reaction-cycle times. Epitope screening experiments using a p53 antibody (PAb240) produced clearly defined binding patterns. The peptidomimetic sequences on the microchip show specific antibody binding and provide insights into the molecular details responsible for specificity of epitope binding. Our approach requires just a conventional synthesizer and a computer-controllable optical module, thereby allowing potential development of peptide microchips for various pharmaceutical and proteomic applications in routine research laboratories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PGA deprotection.
Figure 2: Representative experiments for optimization of PGA deprotection.
Figure 3: PAb240 binding to the peptide and peptidomimetic microchip for synthesis validation and antibody-epitope analog discovery.
Figure 4: Results of positional scanning of the RHSVV epitope of p53 using PAb240 antibody binding.

Similar content being viewed by others

References

  1. Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

    Article  CAS  Google Scholar 

  2. Merrifield, R.B. Solid phase synthesis. Science 232, 341–347 (1986).

    Article  CAS  Google Scholar 

  3. Lam, K.S. et al. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82–84 (1991).

    Article  CAS  Google Scholar 

  4. Houghten, R.A. et al. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354, 84–86 (1991).

    Article  CAS  Google Scholar 

  5. Frank, R. SPOT-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48, 9217–9232 (1992).

    Article  CAS  Google Scholar 

  6. Fodor, S.P.A. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).

    Article  CAS  Google Scholar 

  7. Lebl, M. Solid-phase synthesis on planar supports. Biopolymers 47, 397–404 (1998).

    Article  CAS  Google Scholar 

  8. Beck-Sickinger,A.G. & Jung, G. From multiple peptide synthesis to peptide libraries. in Combinatorial Peptide and Nonpeptide Libraries. A Handbook (ed. Jung, G.) 79–109 (VCH, New York, 1996).

    Chapter  Google Scholar 

  9. Emili, A.Q. & Cagney, G. Large-scale functional analysis using peptide or protein arrays. Nat. Biotechnol. 18, 393–397 (2000).

    Article  CAS  Google Scholar 

  10. Li, M. Applications of display technologies to protein analysis. Nat. Biotechnol. 18, 1251–1256 (2000).

    Article  CAS  Google Scholar 

  11. Furka, A. Chemical synthesis of peptide libraries. in Combinatorial Peptide and Nonpeptide Libraries. A Handbook (ed. Jung, G.) 111–138 (VCH, New York, 1996).

    Chapter  Google Scholar 

  12. Lam, K.S. & Renil, M. From combinatorial chemistry to chemical microarray. Curr. Opin. Chem. Biol. 6, 353–358 (2002).

    Article  CAS  Google Scholar 

  13. Winssinger, N., Harris, J.L., Backes, B.J. & Schultz, P.G. From split-pool libraries to spatially addressable microarrays and its application to functional proteomic profiling. Angew. Chem. Int. Ed. 40, 3152–3155 (2001).

    Article  CAS  Google Scholar 

  14. Kramer, A. & Scheinder-Mergener, J. Synthesis and screening of peptide libraries on continuous cellulose membrane supports. Methods Mol. Biol. 87, 25–39 (1998).

    CAS  PubMed  Google Scholar 

  15. Wenschuh, H. et al. Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers 55, 188–206 (2000).

    Article  CAS  Google Scholar 

  16. Kramer, A. et al. Spot synthesis: observations and optimizations. J. Pept. Res. 54, 319–327 (1999).

    Article  CAS  Google Scholar 

  17. Cho, C.Y. et al. An unnatural biopolymer. Science 261, 1303–1305 (1993).

    Article  CAS  Google Scholar 

  18. Stewart, J.M. & Young, J.D., eds. Solid Phase Peptide Synthesis (Pierce Chemical Co., Rockford, IL, 1984).

    Google Scholar 

  19. Beier, M. & Hoheisel, J.D. Production by quantitative photolithographic synthesis of individually quality checked DNA microarrays. Nucl. Acids Res. 28, 11e (2000).

    Article  Google Scholar 

  20. Yu, P. et al. Oligonucleotide synthesis using solution photogenerated acids. J. Am. Chem. Soc. 120, 12698–12699 (1998).

    Article  Google Scholar 

  21. Leproust, E. et al. Combinatorial screening method for synthesis optimization on a digital light-controlled microarray platform. J. Comb. Chem. 2, 349–354 (2000).

    Article  CAS  Google Scholar 

  22. Pellois, J.P., Wang, W. & Gao, X. Peptide synthesis based on Boc chemistry and solution photogenerated acids. J. Comb. Chem. 2, 355–360 (2000).

    Article  CAS  Google Scholar 

  23. Gao, X. et al. A flexible DNA chip synthesis gated by deprotection using solution photogenerated acids. Nucleic Acids Res. 29, 4744–4750 (2001).

    Article  CAS  Google Scholar 

  24. Stephen, C.W. & Lane, D.P. Mutant conformation of p53. Precise epitope mapping using a filamentous phage epitope library. J. Mol. Biol. 225, 577–583 (1992).

    Article  CAS  Google Scholar 

  25. Stephen, C.W., Helminen, P. & Lane, D.P. Characterization of epitopes on human p53 using phage displayed peptide libraries: insights into antibody-peptide interactions. J. Mol. Biol. 248, 58–78 (1995).

    Article  CAS  Google Scholar 

  26. MacDonald, S.A., Willson, C.G. & Fréchet, J.M. Chemical amplification in high-resolution imaging systems. Acc. Chem. Res. 27, 151–157 (1994).

    Article  CAS  Google Scholar 

  27. Willson, C.G. Organic resist materials. in Introduction to Microlithography (eds Thompson, L.F., Willson, C.G. & Bowden, M.J.) 138–267 (Am. Chem. Soc., Washington, DC, 1994).

    Google Scholar 

  28. Singh-Gasson, S. et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotechnol. 17, 974–978 (1999).

    Article  CAS  Google Scholar 

  29. McGall, G.H. et al. The efficiency of light-directed synthesis of DNA arrays on glass substrates. J. Am. Chem. Soc. 119, 5081–5090 (1997).

    Article  CAS  Google Scholar 

  30. Leproust, E., Zhang, H., Yu, P., Zhou, X. & Gao, X. Characterization of oligodeoxyribonucleotide synthesis on glass plates. Nucleic Acids Res. 29, 2171–2180 (2001).

    Article  CAS  Google Scholar 

  31. The Chipping Forecast. Nat. Genet. 21 (Suppl), (1999).

  32. Devlin, J.J., Panganiban, L.C. & Devlin, P.E. Random peptide libraries: a source of specific protein binding molecules. Science 249, 404–406 (1990).

    Article  CAS  Google Scholar 

  33. Scott, J.K. & Smith, G.P. Searching for peptide ligands with an epitope library. Science 249, 386–390 (1990).

    Article  CAS  Google Scholar 

  34. Felici, F., Castagnoli, L., Musacchio, A., Jappelli, R. & Cesareni, G. Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J. Mol. Biol. 222, 301–310 (1991).

    Article  CAS  Google Scholar 

  35. Cwirla, S.E., Peters, E.A., Barrett, R.W. & Dower, W.J. Peptides on phage: a vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. USA. 87, 6378–6382 (1990).

    Article  CAS  Google Scholar 

  36. Pellois, J.P. Photogenerated reagents and light-directed parallel synthesis of peptide microarrays (PhD Thesis) (Univ. of Houston, Houston, TX, 2002).

  37. Bochet, C. Wavelength-selective cleavage of photolabile protecting groups. Tetrahedron Lett. 41, 6341–6346 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by grants from the National Institutes of Health, National Cancer Institute, National Science Foundation, Texas ATP, the National Foundation for Cancer Research, and the R.A. Welch Foundation. We thank Ciro Nishiguchi for programming DIGI-SYN, Eric Leproust for sharing results on DNA chip synthesis and discussions, and Texas Instruments for the Digital Light Projector evaluation kits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolian Gao.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellois, J., Zhou, X., Srivannavit, O. et al. Individually addressable parallel peptide synthesis on microchips. Nat Biotechnol 20, 922–926 (2002). https://doi.org/10.1038/nbt723

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt723

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing