Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome shuffling of Lactobacillus for improved acid tolerance

Abstract

Fermentation-based bioprocesses rely extensively on strain improvement for commercialization. Whole-cell biocatalysts are commonly limited by low tolerance of extreme process conditions such as temperature, pH, and solute concentration. Rational approaches to improving such complex phenotypes lack good models and are especially difficult to implement without genetic tools. Here we describe the use of genome shuffling to improve the acid tolerance of a poorly characterized industrial strain of Lactobacillus. We used classical strain-improvement methods to generate populations with subtle improvements in pH tolerance, and then shuffled these populations by recursive pool-wise protoplast fusion. We identified new shuffled lactobacilli that grow at substantially lower pH than does the wild-type strain on both liquid and solid media. In addition, we identified shuffled strains that produced threefold more lactic acid than the wild type at pH 4.0. Genome shuffling seems broadly useful for the rapid evolution of tolerance and other complex phenotypes in industrial microorganisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of genome-shuffled libraries.
Figure 2: Characterization of libraries in 96-well megatiter plates.
Figure 3: Screening in 10 ml culture tubes.
Figure 4: Fermentations in shake flasks at pH 3.9.
Figure 5: Characterization of an isolate in a 1 liter bioreactor.

Similar content being viewed by others

References

  1. Choi, J. & Lee, S.Y. Economic considerations in the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial fermentation. Appl. Microbiol. Biotechnol. 53, 646–649 (2000).

    Article  CAS  Google Scholar 

  2. Hashimoto, S. & Ozaki, A. Whole microbial cell processes for manufacturing amino acids, vitamins or ribonucleotides. Curr. Opin. Biotechnol. 10, 604–608 (1999).

    Article  CAS  Google Scholar 

  3. Ho, N.W., Chen, Z., Brainard, A.P. & Sedlak, M. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv. Biochem. Eng. Biotechnol. 65, 163–192 (1999).

    CAS  PubMed  Google Scholar 

  4. Ikeda, M. & Katsumata, R. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose pathway. Appl. Environ. Microbiol. 65, 2497–2502 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Katsumata, R. & Ikeda, M. Hyperproduction of tryptophan in Corynebacterium glutamicum by pathway engineering. Biotechnology (NY) 11, 921–925 (1993).

    CAS  Google Scholar 

  6. Perkins, J.B. et al. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J. Ind. Microbiol. Biotechnol. 22, 8–18 (1999).

    Article  CAS  Google Scholar 

  7. Aristidou, A. & Penttila, M. Metabolic engineering applications to renewable resource utilization. Curr. Opin. Biotechnol. 11, 187–198 (2000).

    Article  CAS  Google Scholar 

  8. Braunegg, G., Lefebvre, G. & Genser, K.F. Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J. Biotechnol. 65, 127–161 (1998).

    Article  CAS  Google Scholar 

  9. Chontani, G. et al. The commercial production of chemicals using pathway engineering. Biochim. Biophys. Acta 1543, 434–455 (2000).

    Article  Google Scholar 

  10. Donnelly, M.I., Millard, C.S., Clark, D.P., Chen, M.J. & Rathke, J.W. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol. Appl. Biochem. Biotechnol. 70–72, 187–198 (1998).

    Article  Google Scholar 

  11. Ho, N.W., Chen, Z. & Brainard, A.P. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64, 1852–1859 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kautola, H., Vassilev, N. & Linko, Y.Y. Continuous itaconic acid production by immobilized biocatalysts. J. Biotechnol. 13, 315–323 (1990).

    Article  CAS  Google Scholar 

  13. Lee, S.Y. & Choi, J.I. Production of microbial polyester by fermentation of recombinant microorganisms. Adv. Biochem. Eng. Biotechnol. 71, 183–207 (2001).

    CAS  PubMed  Google Scholar 

  14. Park, J.H., Kim, G.J. & Kim, H.S. Production of D-amino acid using whole cells of recombinant Escherichia coli with separately and coexpressed D-hydantoinase and N-carbamoylase. Biotechnol. Prog. 16, 564–570 (2000).

    Article  CAS  Google Scholar 

  15. Schulze, B. & Wubbolts, M.G. Biocatalysis for industrial production of fine chemicals. Curr. Opin. Biotechnol. 10, 609–615 (1999).

    Article  CAS  Google Scholar 

  16. Gong, C.S., Cao, N.J., Du, J. & Tsao, G.T. Ethanol production from renewable resources. Adv. Biochem. Eng. Biotechnol. 65, 207–241 (1999).

    CAS  PubMed  Google Scholar 

  17. McLaren, J. & Faulkner, D. The technology roadmap for plant/crop-based renewable resources 2020 (DOE/GO-10099-706) 1–41 (US Department of Energy, Indianapolis, IN,) 1999.

  18. Varadarajan, S. & Miller, D.J. Catalytic upgrading of fermentation-derived organic acids. Biotechnol. Prog. 15, 845–854 (1999).

    Article  CAS  Google Scholar 

  19. Porro, D. et al. Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl. Environ. Microbiol. 65, 4211–4215 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Baniel, A.M. et al. Process for isolating lactic acid. US patent 6,087,532 (2000).

  21. Rallu, F., Gruss, A., Ehrlich, S.D. & Maguin, E. Acid- and multistress-resistant mutants of Lactococcus lactis: identification of intracellular stress signals. Mol. Microbiol. 35, 517–528 (2000).

    Article  CAS  Google Scholar 

  22. De Angelis, M., Bini, L., Pallini, V., Cocconcelli, P.S. & Gobbetti, M. The acid-stress response in Lactobacillus sanfrancisscensis CB1. Microbiology 147, 1863–1873 (2001).

    Article  CAS  Google Scholar 

  23. Arnold, C.N., McElhanon, J., Lee, A., Leonhart, R. & Siegele, D.A. Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. J. Bacteriol. 183, 2178–2186 (2001).

    Article  CAS  Google Scholar 

  24. Audia, J.P., Webb, C.C. & Foster, J.W. Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. Int. J. Med. Microbiol. 291, 97–106 (2001).

    Article  CAS  Google Scholar 

  25. Arnold, F.H. & Volkov, A.A. Directed evolution of biocatalysts. Curr. Opin. Chem. Biol. 3, 54–59 (1999).

    Article  CAS  Google Scholar 

  26. Crameri, A., Raillard, S.A., Bermudez, E. & Stemmer, W.P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).

    Article  CAS  Google Scholar 

  27. Jaeger, K.E., Eggert, T., Eipper, A. & Reetz, M.T. Directed evolution and the creation of enantioselective biocatalysts. Appl. Microbiol. Biotechnol. 55, 519–530 (2001).

    Article  CAS  Google Scholar 

  28. Ness, J.E., Del Cardayré, S.B., Minshull, J. & Stemmer, W.P. Molecular breeding: the natural approach to protein design. Adv. Protein. Chem. 55, 261–292 (2000).

    CAS  PubMed  Google Scholar 

  29. Schmidt-Dannert, C., Umeno, D. & Arnold, F.H. Molecular breeding of carotenoid biosynthetic pathways. Nat. Biotechnol. 18, 750–753 (2000).

    Article  CAS  Google Scholar 

  30. Soong, N.W. et al. Molecular breeding of viruses. Nat. Genet. 25, 436–439 (2000).

    Article  CAS  Google Scholar 

  31. Wackett, L.P. Directed evolution of new enzymes and pathways for environmental biocatalysis. Ann. NY Acad. Sci. 864, 142–152 (1998).

    Article  CAS  Google Scholar 

  32. Zhang, Y., Perry, K., Powell, K., Stemmer, P.C. & del Cardayré, S.B. Evolution of Streptomyces fradiae by whole genome shuffling. Nature 415, 644–646 (2002).

    Article  CAS  Google Scholar 

  33. Larsson, S., Quintana-Sainz, A., Reimann, A., Nilvebrant, N.O. & Jonsson, L.J. Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 84–86, 617–632 (2000).

    Article  Google Scholar 

  34. Martinez, A., Rodriguez, M.E., York, S.W., Preston, J.F. & Ingram, L.O. Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol. Bioeng. 69, 526–536 (2000).

    Article  CAS  Google Scholar 

  35. Lawford, H.G. & Rousseau, J.D. Improving fermentation performance of recombinant Zymomonas in acetic acid-containing media. Appl. Biochem. Biotechnol. 70–72, 161–172 (1998).

    Article  Google Scholar 

  36. Zaldivar, J., Martinez, A. & Ingram, L.O. Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 68, 524–530 (2000).

    Article  CAS  Google Scholar 

  37. Gonzalez-Vara, Y.R.A. et al. Enhanced production of L-(+)-lactic acid in chemostat by Lactobacillus casei DSM 20011 using ion-exchange resins and cross-flow filtration in a fully automated pilot plant controlled via NIR. Biotechnol. Bioeng. 67, 147–156 (2000).

    Article  CAS  Google Scholar 

  38. Benninga, H.A. A History of Lactic Acid Making (Kluyver Academic Publishers, Dordrecht, The Netherlands, 1990).

    Google Scholar 

  39. Hongo, M., Nomura, Y. & Iwahara, M. Novel methods of lactic production by electrodialysis fermentation. Appl. Environ. Microbiol. 32, 227–234 (1986).

    Google Scholar 

  40. O'Sullivan, E. & Condon, S. Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis. Appl. Environ. Microbiol. 63, 4210–4215 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Del Cardayré, S.B. et al. Molecular breeding of transposable elements. PCT application WO 02/04629 A (2002).

  42. Miller, J.H. in Experiments in Molecular Genetics. (ed. Miller, J.H.) 125–129 (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1972).

    Google Scholar 

  43. Cocconcelli, P.S., Morelli, L., Vescovo, M. & Bottazzi, V. Intergeneric protoplast fusion in lactic acid bacteria. FEMS Microbiol. Lett. 35, 211–214 (1986).

    Article  CAS  Google Scholar 

  44. Morelli, L. et al. Lactobacillus protoplast transformation. Plasmid 17, 73–75 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Keith Powell and Tony Cox for their useful suggestions and discussions and Ken Zahn for proofreading the manuscript. Special thanks go to Amy Giver, Henry Garcia, and Rob Pak for technical support. Funding for this project was provided in part by the US National Institute of Standards and Technology Advanced Technology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen del Cardayré.

Ethics declarations

Competing interests

Each of the authors is or was an employee of Maxygen, Codexis, or Cargill Dow, LLC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patnaik, R., Louie, S., Gavrilovic, V. et al. Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20, 707–712 (2002). https://doi.org/10.1038/nbt0702-707

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0702-707

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing