Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An integrated approach for finding overlooked genes in yeast

Abstract

We report here the discovery of 137 previously unappreciated genes in yeast through a widely applicable and highly scalable approach integrating methods of gene-trapping, microarray-based expression analysis, and genome-wide homology searching. Our approach is a multistep process in which expressed sequences are first trapped using a modified transposon that produces protein fusions to β-galactosidase (β-gal); non-annotated open reading frames (ORFs) translated as β-gal chimeras are selected as a candidate pool of potential genes. To verify expression of these sequences, labeled RNA is hybridized against a microarray of oligonucleotides designed to detect gene transcripts in a strand-specific manner. In complement to this experimental method, novel genes are also identified in silico by homology to previously annotated proteins. As these methods are capable of identifying both short ORFs and antisense ORFs, our approach provides an effective supplement to current gene-finding schemes. In total, the genes discovered using this approach constitute 2% of the yeast genome and represent a wealth of overlooked biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the integrated approach for finding overlooked yeast genes.
Figure 2: Analysis of β-gal activity in transposon-tagged yeast.
Figure 3: Microarray-based expression analysis with strand-specific oligos.
Figure 4: Distribution and analysis of previously unappreciated genes in yeast chromosomes I through VIII.
Figure 5: Distribution and analysis of new genes in yeast chromosomes IX through XVI.
Figure 6: Immunolocalization of novel gene products.

Similar content being viewed by others

References

  1. Stein, L. Genome annotation: from sequence to biology. Nat. Rev. Genet. 2, 493–503 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Gopal, S. et al. Homology-based annotation yields 1,042 new candidate genes in the Drosophila melanogaster genome. Nat. Genet. 27, 337–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  4. Reboul, J. et al. Open-reading frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans. Nat. Genet. 27, 332–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Shoemaker, D.D. et al. Experimental annotation of the human genome using microarray technology. Nature 409, 922–927 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Goffeau, A. et al. Life with 6000 genes. Science 274, 546, 563–567 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Mewes, H.W. et al. Overview of the yeast genome. Nature 387 (Suppl.), 7–8 (1997).

    PubMed  Google Scholar 

  8. Philippsen, P. et al. The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications. Nature 387 (Suppl.), 93–98 (1997).

    CAS  PubMed  Google Scholar 

  9. Velculescu, V.E. et al. Characterization of the yeast transcriptome. Cell 88, 243–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Blandin, G. et al. Genomic exploration of the hemiascomycetous yeasts: 4. the genome of Saccharomyces cerevisiae revisited. FEBS Lett. 487, 31–36 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Cliften, P.F. et al. Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res. 11, 1175–1186 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Ross-Macdonald, P., Sheehan, A., Roeder, G.S. & Snyder, M. A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94, 190–195 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seifert, H.S., Chen, E.Y., So, M. & Heffron, F. Shuttle mutagenesis: a method of transposon mutagenesis for Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 83, 735–739 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ross-MacDonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413–418 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Kumar, A., des Etages, S.A., Coelho, P.S.R., Roeder, G.S. & Snyder, M. High-throughput methods for the large-scale analysis of gene function by transposon tagging. Methods Enzymol. 328, 550–574 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Selinger, D.W. et al. RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nat. Biotechnol. 18, 1262–1268 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Kane, M.D. et al. Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res. 28, 4552–4557 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu, J. & Zhang, M.Q. SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 15, 607–611 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Sharp, P.M. & Li, W.H. The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bairoch, A. & Apweiler, R. The SWISS–PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wood, V., Rutherford, K.M., Ivens, A., Rajandream, M.-A. & Barrell, B. A re-annotation of the Saccharomyces cerevisiae genome. Comp. Funct. Genom. 2, 143–154 (2001).

    Article  CAS  Google Scholar 

  22. Ball, C. et al. Saccharomyces Genome Database provides tools to survey gene expression and functional analysis data. Nucleic Acids Res. 29, 80–81 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Basrai, M.A., Hieter, P. & Boeke, J.D. Small open reading frames: beautiful needles in the haystack. Genome Res. 7, 768–771 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Basrai, M.A., Velculescu, V.E., Kinzler, K.W. & Hieter, P. NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 7041–7049 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wagner, E.G. & Simons, R.W. Antisense RNA control in bacteria, phages, and plasmids. Annu. Rev. Microbiol. 48, 713–742 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Henikoff, S., Keene, M.A., Fechtel, K. & Fristrom, J.W. Gene within a gene: nested Drosophila genes encode unrelated proteins on opposite DNA strands. Cell 44, 33–42 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Spencer, C.A., Gietz, R.D. & Hodgetts, R.B. Overlapping transcription units in the dopa decarboxylase region of Drosophila. Nature 322, 279–281 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Vanhee-Brossollet, C. & Vaquero, C. Do natural antisense transcripts make sense in eukaryotes? Gene 211, 1–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Mackiewicz, P., Kowalczuk, M., Gierlik, A., Dudek, M.R. & Cebrat, S. Origin and properties of non-coding ORFs in the yeast genome. Nucleic Acids Res. 27, 3503–3509 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, C.-T. & Wang, J. Recognition of protein coding genes in the yeast genome at better than 95% accuracy based on the Z curve. Nucleic Acids Res. 28, 2804–2814 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Malpertuy, A. et al. Genomic exploration of the hemiascomycetous yeasts: 19. Ascomycetes-specific genes. FEBS Lett. 487, 113–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163–168 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Adams, A., Gottschling, D.E., Kaiser, C.A. & Stearns, T. Methods in yeast genetics, 1997 Edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1998).

    Google Scholar 

  34. Altschul, S.F., Gish, W., Miller, W., Meyers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Holstege, F.C.P. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Pearson, W.R., Wood, T., Zhang, Z. & Miller, W. Comparison of DNA sequences with protein sequences. Genomics 46, 24–36 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Wootton, J.C. Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput. Chem. 18, 269–285 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lara Umansky, Stacy Piccirillo, and Sandra Matson for technical assistance, and Metin Bilgin for helpful suggestions. This work was supported by NIH Grant R01-CA77808 to M.S. A.K. is supported by a post-doctoral fellowship from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Snyder.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Harrison, P., Cheung, KH. et al. An integrated approach for finding overlooked genes in yeast. Nat Biotechnol 20, 58–63 (2002). https://doi.org/10.1038/nbt0102-58

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0102-58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing