Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A high-throughput alphavirus-based expression cloning system for mammalian cells

Abstract

We have developed a widely applicable functional genomics strategy based on alphavirus expression vectors. The technology allows for rapid identification of genes encoding a functional activity such as binding of a defined ligand. Complementary DNA (cDNA) libraries were expressed in mammalian cells following infection with recombinant Sindbis virus (SIN replicon particles), a member of the Alphavirus genus. Virus-infected cells that specifically bound a ligand of choice were isolated using fluorescence-activated cell sorting (FACS). Replication-competent, infective SIN replicon particles harboring the corresponding cDNA were amplified in a next step. Within one round of selection, viral clones encoding proteins recognized by monoclonal antibodies or Fc-fusion molecules could be isolated and sequenced. Moreover, using the same viral libraries, a plaque-lift assay was established that allowed the identification of secreted, intracellular, and membrane proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of the SIN replicon vectors and the expression screening strategy.
Figure 2: Highly efficient and controlled infection with single SIN replicon particles.
Figure 3: Sorting and recovery efficiency of SIN replicon particle–infected cells.
Figure 4: Single-step isolation of ligands for monoclonal antibodies or Fc-fusion molecules.
Figure 5: Isolation of genes encoding secreted, intracellular, and membrane proteins.

Similar content being viewed by others

References

  1. Boutros, M. & Perrimon, N. Drosophila genome takes flight. Nat. Cell Biol. 2, E53–E54 (2000).

  2. Seed, B. & Aruffo, A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc. Natl. Acad. Sci. USA 84, 3365–3369 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aruffo, A. & Seed, B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc. Natl. Acad. Sci. USA 84, 8573–8577 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aruffo, A. & Seed, B. Molecular cloning of two CD7 (T-cell leukemia antigen) cDNAs by a COS cell expression system. EMBO J. 6, 3313–3316 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kitamura, T. et al. Efficient screening of retroviral cDNA expression libraries. Proc. Natl. Acad. Sci. USA 92, 9146–9150 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seed, B. Developments in expression cloning. Curr. Opin. Biotechnol. 6, 567–573 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Lever, A.M. Lentiviral vectors: progress and potential. Curr. Opin. Mol. Ther. 2, 488–496 (2000).

    CAS  PubMed  Google Scholar 

  8. Granziero, L., Nelboeck, P., Bedoucha, M., Lanzavecchia, A. & Reid, H.H. Baculovirus cDNA libraries for expression cloning of genes encoding cell-surface antigens. J. Immunol. Meth. 25, 131–139 (1997).

    Article  Google Scholar 

  9. He, T.C. et al. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiong, C. et al. Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243, 1188–1191 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Strauss, J.H. & Strauss, E.G. The Alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58, 491–562 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lundstrom, K. Alphaviruses as tools in neurobiology and gene therapy. J. Recept. Signal Transduct. Res. 19, 673–686 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Xiong, C. et al. Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243, 1188–1191 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Gardner, J.P. et al. Infection of human dendritic cells by a Sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein. J. Virol. 74, 11849–11857 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Datwyler, D.A., Eppenberger, H.M., Koller, D., Bailey, J.E. & Magyar, J.P. Efficient gene delivery into adult cardiomyocytes by recombinant Sindbis virus. J. Mol. Med. 77, 859–864 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Frolov, I. & Schlesinger, S. Translation of Sindbis virus mRNA: effects of sequences downstream of the initiating codon. J. Virol. 68, 8111–8117 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hahn, C.S., Hahn, Y.S., Braciale, T.J. & Rice, C.M. Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proc. Natl. Acad. Sci. USA 89, 2679–2683 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frolov, I. et al. Alphavirus-based expression vectors: strategies and applications. Proc. Natl. Acad. Sci. USA 93, 11371–11377 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bredenbeek, P.J., Frolov, I., Rice, C.M. & Schlesinger, S. Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J. Virol. 67, 6439–6446 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnston, R.E., Wan, K. & Bose, H.R. Homologous interference induced by Sindbis virus. J. Virol. 14, 1076–1082 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wong, B.Y., Chen, H., Chung, S.W. & Wong, P.M. High-efficiency identification of genes by functional analysis from a retroviral cDNA expression library. J. Virol. 68, 5523–5531 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Munro, S. & Maniatis, T. Expression cloning of the murine interferon gamma receptor cDNA. Proc. Natl. Acad. Sci. USA 86, 9248–9252 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Onishi, M. et al. Applications of retrovirus-mediated expression cloning. Exp. Hematol. 24, 324–329 (1996).

    CAS  PubMed  Google Scholar 

  24. Frolov, I. et al. Selection of RNA replicons capable of persistent noncytopathic replication in mammalian cells. J. Virol. 73, 3845–3865 (1999).

    Google Scholar 

  25. Simonsen, H. & Lodish, H.F. Cloning by function: expression cloning in mammalian cells. Trends Pharmacol. Sci. 15, 437–441 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Kishimoto, T., Akira, S. & Taga, T. Interleukin-6 and its receptor: a paradigm for cytokines. Science 258, 593–597 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Weiss, B.G. & Schlesinger, S. Recombination between Sindbis virus RNAs. J. Virol. 65, 4017–4025 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Traunecker, A., Oliveri, F. & Karjalainen, K. Myeloma based expression system for production of large mammalian proteins. TIBTECH 9, 109–113 (1991).

Download references

Acknowledgements

We thank Dr Gary Jennings and Mark Dyer for carefully reading the manuscript and Prof. Sondra Schlesinger for many helpful discussions and for providing the plasmids pSinRep5 and pDH-EB. This article is dedicated to the memory of Prof. James E. Bailey, who passed away during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin F. Bachmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koller, D., Ruedl, C., Loetscher, M. et al. A high-throughput alphavirus-based expression cloning system for mammalian cells. Nat Biotechnol 19, 851–855 (2001). https://doi.org/10.1038/nbt0901-851

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0901-851

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing