Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metabolic engineering of astaxanthin production in tobacco flowers

Abstract

Using metabolic engineering, we have modified the carotenoid biosynthesis pathway in tobacco (Nicotiana tabacum) to produce astaxanthin, a red pigment of considerable economic value. To alter the carotenoid pathway in chromoplasts of higher plants, the cDNA of the gene CrtO from the alga Haematococcus pluvialis, encoding β-carotene ketolase, was transferred to tobacco under the regulation of the tomato Pds (phytoene desaturase) promoter. The transit peptide of PDS from tomato was used to target the CRTO polypeptide to the plastids. Chromoplasts in the nectary tissue of transgenic plants accumulated (3S,3′S) astaxanthin and other ketocarotenoids, changing the color of the nectary from yellow to red. This accomplishment demonstrates that plants can be used as a source of novel carotenoid pigments such as astaxanthin. The procedures described in this work can serve as a platform technology for future genetic manipulations of pigmentation of fruits and flowers of horticultural and floricultural importance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biochemical pathway of astaxanthin biosynthesis from β-carotene.
Figure 2: Import of PDS into chloroplasts.
Figure 3
Figure 4: Color change in the flowers of transgenic plants expressing CrtO .

Similar content being viewed by others

References

  1. Mayne, S.T. Beta-carotene, carotenoids, and disease prevention in humans FASEB J. 10, 690–701 ( 1996).

    Article  CAS  Google Scholar 

  2. Cunningham, F.X. & Gantt, E. Genes and enzymes of carotenoid biosynthesis in plants Ann. Rev. Plant Physiol. Plant Mol. Biol. 49, 557–583 ( 1998).

    Article  CAS  Google Scholar 

  3. Torrissen, O.J. Pigmentation of salmonids—effect of carotenoids in eggs and start-feeding diets on survival and growth rate. Aquaculture 43, 185–193 (1984).

    Article  CAS  Google Scholar 

  4. Craik, J.C. Egg quality and egg pigment content in salmonid fishes Aquaculture 112, 217–226 ( 1985).

    Google Scholar 

  5. Pettersson, A. & Lignell, A. Astaxanthin deficiency in eggs and fry of Baltic salmon (Salmo salar ) with the M74 syndrome. Ambio 28, 43–47 ( 1999).

    Google Scholar 

  6. Jyonouchi, H., Sun, S.I. & Gross, M. Effect of carotenoids on in vitro immunoglobulin production by human peripheral blood mononuclear cells: astaxanthin, a carotenoid without vitamin A activity, enhances in vitro immunoglobulin production in response to a T-dependent stimulant and antigen. Nutr. Cancer 23, 171–183 (1995).

    Article  CAS  Google Scholar 

  7. Tanaka, T. et al. Chemoprevention of rat oral carcinogenesis by naturally occurring xanthophylls, astaxanthin and canthaxarathin. Cancer Res. 55, 4059–4064 (1995).

    CAS  PubMed  Google Scholar 

  8. Chew, B.P., Park, J.S., Wong, M.W. & Wong, T.S. A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Anticancer Res. 19: 1849 –1853 (1999).

    Google Scholar 

  9. Lawlor, S.M. & Obrien, N.M. Astaxanthin: antioxidant effects in chicken embryo fibroblasts. Nutr. Res. 15, 1695–1704 (1995).

    Article  CAS  Google Scholar 

  10. Palozza, P. & Krinsky, N.I. Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch. Biochem. Biophys. 297, 291–295 ( 1992).

    Article  CAS  Google Scholar 

  11. Kobayashi, M. & Sakamoto, Y. Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol. Lett. 21, 265–269 (1999).

    Article  CAS  Google Scholar 

  12. Lotan, T. & Hirschberg, J. Cloning and expression in Escherichia coli of the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett. 364, 125–128 (1995).

    Article  CAS  Google Scholar 

  13. Harker, M. & Hirschberg, J. Biosynthesis of ketocarotenoids in transgenic cyanobacteria expressing the algal gene for β-C-4-oxygenase, crtO. FEBS Lett. 404, 129– 134 (1997).

    Article  CAS  Google Scholar 

  14. Ronen, G., Cohen, M., Zamir, D. & Hirschberg, J. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant delta. Plant J. 17 , 341–351 (1999).

    Article  CAS  Google Scholar 

  15. Gray, J., Picton, S., Shabbeer, J., Schuch, W. & Grierson, D. Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Mol. Biol. 19, 69–87 (1992).

    Article  CAS  Google Scholar 

  16. Pecker, I., Chamovitz, D., Linden, H., Sandmann, G. & Hirschberg, J. A single polypeptide catalyzing the conversion of phytoene to zeta-carotene is transcriptionally regulated during tomato fruit ripening. Proc. Natl. Acad. Sci. USA 89, 4962–4966 (1992).

    Article  CAS  Google Scholar 

  17. Corona, V. et al. Regulation of a carotenoid biosynthesis gene promoter during plant development . Plant J. 9, 505–512 (1996).

    Article  CAS  Google Scholar 

  18. Giuliano, G., Bartley, G.E. & Scolnik, P. Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5, 379– 387 (1993).

    Article  CAS  Google Scholar 

  19. Mann, V., Pecker, I. & Hirschberg, J. Cloning and characterization of the gene for phytoene desaturase (Pds) from tomato (Lycopersicon esculentum). Plant Mol. Biol. 24, 429–434 (1994).

    Article  CAS  Google Scholar 

  20. Chamovitz, D., Pecker, I. & Hirschberg, J. The molecular basis of resistance to the herbicide norflurazon . Plant Mol. Biol. 16, 967– 974 (1991).

    Article  CAS  Google Scholar 

  21. Pecker, I. et al. In Research in photosynthesis, Vol. 3 (ed. Murata, N.), 11–18 (Kluwer Academic Publishers, Dordrecht; 1993).

    Google Scholar 

  22. Becker, D. Binary vectors which allow the exchange of plant selectable markers and reporter genes. Nucleic Acids Res. 18, 203– 203 (1989).

    Article  Google Scholar 

  23. Fahn, A. Secretory-tissues in vascular plants. New Phytologist 108, 229–257 (1988).

    Article  Google Scholar 

  24. Piccaglia, R., Marotti, M. & Grandi, S. Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Indust. Crops Products 8, 45–51 (1998 ).

    Article  CAS  Google Scholar 

  25. Misawa, N. & Shimada, H. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J. Biotechnol. 59, 169–181 ( 1997).

    Article  CAS  Google Scholar 

  26. Wang, C.W., Oh, M.K. & Liao, J.C. Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol. Bioeng. 62, 235–241 (1999).

    Article  CAS  Google Scholar 

  27. Sandmann, G., Albrecht, M., Schnurr, G., Knorzer, O. & Boger, P. The biotechnological potential and design of novel carotenoids by gene combination. Trends Biotechnol. 17, 233–237 ( 1999).

    Article  CAS  Google Scholar 

  28. Bon, J.A., Leathers, T.D. & Jayaswal, R.K. Isolation of astaxanthin-overproducing mutants of Phaffia rhodozyma. Biotechnol. Lett. 19, 109–112 (1997).

    Article  CAS  Google Scholar 

  29. Chumpolkulwong, N., Kakizono, T., Nagai, S. & Nishio, N. Increased astaxanthin production by Phaffia rhodozyma mutants isolated as resistant to diphenylamine . J. Ferment. Bioeng. 83, 429– 434 (1997).

    Article  CAS  Google Scholar 

  30. Boussiba, S., Bing, W., Yuan, J.P., Zarka, A. & Chen, F. Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses. Biotechnol. Lett. 21, 601–604 (1999).

    Article  CAS  Google Scholar 

  31. Yuan, J.P. & Chen, F. Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga Haematococcus pluvialis. Food Chem. 68, 443– 448 (2000).

    Article  CAS  Google Scholar 

  32. Ausich, R.L. Commercial opportunities for carotenoid production by biotechnology. Pure Appl. Chem. 69, 2169–2173 (1997).

    Article  CAS  Google Scholar 

  33. Bonk, M. et al. Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly Eur. J. Biochem. 247, 942–950 (1997).

    Article  CAS  Google Scholar 

  34. Ye, X. et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303– 305 (2000).

    Article  CAS  Google Scholar 

  35. Shewmaker, C.K., Sheehy, J.A., Daley, M., Colburn, S. & Ke, D.Y. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects Plant J. 20, 401–412X (1999).

    Article  CAS  Google Scholar 

  36. Jefferson, R.A., Kavanagh, T.A. & Bevan, M.W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907 (1987).

    Article  CAS  Google Scholar 

  37. Horsch, R.B., Rogers, S.G. & Fraley, R.T. Transgenic plants. Cold Spring Harbor Symp. Quant. Biol. 50, 433–437 (1985).

    Article  CAS  Google Scholar 

  38. Koussevitzky, S., Ne'eman, E., Sommer, A., Steffens, J.C. & Harel, E. Purification and properties of a novel chloroplast stromal peptidase. processing of polyphenol oxidase and other imported precursors . J. Biol. Chem. 273, 27064– 27069 (1998).

    Article  CAS  Google Scholar 

  39. Sommer, A., Ne'eman, E., Steffens, J.C., Mayer, A.M. & Harel, E. Import, targeting, and processing of a plant polyphenol oxidase. Plant Physiol. 105, 1301–1311 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. E. Harel and Mrs. E. Ne'eman for their advice and help in the protein import experiments, and Dr. A. Young for supplying the carotenoid standards. M.H. was a recipient of the Golda Meir postdoctoral fellowship. This research was carried out under the auspices of the Avron-Evenari Minerva Center of Photosynthesis Research, The Hebrew University of Jerusalem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Hirschberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, V., Harker, M., Pecker, I. et al. Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol 18, 888–892 (2000). https://doi.org/10.1038/78515

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing