Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism

Abstract

Immunostimulatory DNA sequences (ISS) contain unmethylated CpG dinucleotides within a defined motif. Immunization with ISS-based vaccines has been shown to induce high antigen-specific cytotoxic lymphocyte (CTL) activity and a Th1-biased immune response. We have developed a novel ISS-based vaccine composed of ovalbumin (OVA) chemically conjugated to ISS–oligodeoxynucleotide (ODN). Protein–ISS conjugate (PIC) is more potent in priming CTL activity and Th1-biased immunity than other ISS-based vaccines. Cytotoxic lymphocyte activation by ISS–ODN-based vaccines is preserved in both CD4−/− and MHC class II−/− gene-deficient animals. Furthermore, PIC provides protection against a lethal burden of OVA-expressing tumor cells in a CD8+ cell-dependent manner. These results demonstrate that PIC acts through two unique mechanisms: T-helper-independent activation of CTL and facilitation of exogenous antigen presentation on MHC class I. This technology may have clinical applications in cancer therapy and in stimulating host defense in AIDS and chronic immunosuppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of ovalbumin–ISS–ODN conjugate.
Figure 2: Antigen-specific cytotoxic lymphocyte activity following intradermal immunization of test animals on days zero and 14 with the following vaccines: PIC (50 μg, ▪), OVA + ISS–ODN coadministration (50 μg each, ♦), mPIC (50 μg, ), pACB–OVA (50 μg, , or OVA alone (50 μg, ).
Figure 3: PIC vaccination induces a Th1-biased immune response.
Figure 4: Activation of CTL activity by PIC is independent of MHC class II-restricted help.
Figure 5: Plot showing that PIC vaccination provides protective immunity in both preventive and therapeutic models of cancer.
Figure 6: ISS-based vaccines provide T-helper-independent “licensing” of APC and facilitation of exogenous antigen presentation on MHC class I.

Similar content being viewed by others

References

  1. Carson, D. & Raz, E. Oligonucleotide adjuvants for T helper 1 Th1 -specific vaccination. J. Exp. Med. 186, 1621–1622. (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krieg, A.M., Yi, A.K., Schorr, J. & Davis, H.L. The role of CpG dinucleotides in DNA vaccines. Trends Microbiol. 6, 23–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Shimada, S. et al. Antitumor activity of the deoxyribonucleic acid fraction of Mycobacterium bovis BCG. II. Effects on various syngeneic mouse tumors. J. Natl. Cancer Inst. 74, 681–688 (1985).

    CAS  PubMed  Google Scholar 

  4. Tokunaga, T. et al. Antitumor activity of the deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J. Natl. Cancer Inst. 72, 955–962 (1984).

    CAS  PubMed  Google Scholar 

  5. Yamamoto, S. et al. Unique palindromic sequences in synthetic oligonucleotides are required to induce INF and augment INF-mediated natural killer activity. J. Immunol. 148, 4072–4076 (1992).

    CAS  PubMed  Google Scholar 

  6. Martin-Orozco, E. et al. Enhancement of antigen-presenting cell surface molecules involved in cognate interactions by immunostimulatory DNA sequences. Int. Immunol. 11, 1111–1118 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  7. Krieg, A.M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  8. Lipford, G.B. et al. CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants. Eur. J. Immunol. 27, 2340–2344 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Sato, Y. et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273, 352–354 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Corr, M., Lee, D.J., Carson, D.A. & Tighe, H. Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J. Exp. Med. 184, 1555–1560. ( 1996).

    Article  CAS  PubMed  Google Scholar 

  11. Roman, M. et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat. Med. 3, 849–854 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Horner, A.A. et al. Immunostimulatory DNA is a potent mucosal adjuvant. Cell. Immunol. 190, 77–82 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  13. Chu, R.S., Targoni, O.S., Krieg, A.M., Lehmann, P.V. & Harding, C.V. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 Th1 immunity. J. Exp. Med. 186, 1623–1631 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davis, H.L. et al. CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J. Immunol. 160, 870–876 (1998).

    CAS  PubMed  Google Scholar 

  15. Keene, J.-A. & Foreman, J. Helper activity is required for the in vivo generation of cytotoxic lymphocytes. J. Exp. Med. 155, 768–782 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mitchison, N.A. & O' Malley, C. Three-cell-type cluster of T cells with antigen-presenting cells best explain the epitope linkage and noncognate requirements of the in vivo cytolytic response. Eur. J. Immunol. 17, 1579–1583 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Bennett, S.R.M. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signaling. Nature 393, 478–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Ridge, J.P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a bridge between CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Schoenberger, S.P., Toes, R.E.M., van der Voort, E.I.H., Offringa, R. & Melief, C.J.M. T-cell help for cytotoxic lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Lin, M.S. & Chen, Y.W. B cell differentiation. II. Isotype potential of a single B cell. Cell. Immunol. 150, 343–352 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Porgador, A., Snyder, D. & Gilboa, E. Induction of antitumor immunity using bone marrow-generated dendritic cells. J. Immunol. 156, 2918– 2926 (1996).

    CAS  PubMed  Google Scholar 

  22. Lanzavecchia, A. License to kill. Nature 393, 413– 414 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Harding, F.A. & Allison, J.P. CD28–B7 interactions allow the induction of CD8+ cytotoxic T lymphocytes in the absence of exogenous help. J. Exp. Med. 177, 1791 –1796 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Grewal, I.S. & Flavell, R.A. The role of CD40 ligand in costimulation and T-cell activation. Immunol. Rev. 153, 85–106 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Sigal, L.J., Reiser, H. & Rock, K.L. The role of B7-1 and B7-2 costimulation for the generation of CTL responses in vivo. J. Immunol. 161, 2740–2745 (1998).

    CAS  PubMed  Google Scholar 

  26. Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Ann. Rev. Immunol. 13, 251–276 (1995).

    Article  CAS  Google Scholar 

  27. Jakob, T., Walker, P.S., Krieg, A.M., Udey, M.C. & Vogel, J.C. Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. J. Immunol. 161, 3042–3046 (1998).

    CAS  PubMed  Google Scholar 

  28. Kovacsovics-Bankowski, M. & Rock, K.L. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267, 243–246 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  29. Shen, Z., Reznikoff, G., Dranoff, G. & Rock, K. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158, 2723– 2730 (1997).

    CAS  PubMed  Google Scholar 

  30. Reis e Souza, C. & Germain, R.N. Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. J. Exp. Med. 182, 841–851 (1995).

    Article  Google Scholar 

  31. Pfeifer, J.D. et al. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature 359–362 (1993).

  32. Gromme, M. et al. Recycling MHC class I molecules and endosomal peptide loading. Proc. Natl. Acad. Sci. USA 96, 10326– 10331 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reiss, M. Transforming growth factor-beta and cancer: a love–hate relationship? Oncol. Res. 9, 447–457 (1997).

    CAS  PubMed  Google Scholar 

  34. Botti, C., Seregni, E., Ferrari, L., Martinetti, A. & Bombardieri, E. Immunosuppressive factors: role in cancer development and progression. Int. J. Biol. Markers 13, 51–69 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Korkolopoulous, P., Kaklamanis, L., Pezzella, F., Harris, A.L. & Gatter, K.C. Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer. Brit. J. Cancer 73, 148–153 (1996).

    Article  Google Scholar 

  36. Seliger, B. et al. Suppression of MHC class I antigens in oncogenic transformants: association with decreased recognition by cytotoxic T lymphocytes. Exp. Hematol. 24, 1275–1279 ( 1996).

    CAS  PubMed  Google Scholar 

  37. Dejardin, E. et al. Regulation of major histocompatibility complex class I expression by NF-kappaB-related proteins in breast cancer cells. Oncogene 16, 3299–3307 ( 1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Tomoko Hayashi, Yucan Chiu, and Nadya Cinman for expert technical assistance, and Nancy Noon and Jane Uhle for editorial assistance. We also thank Wei Ping Feung-Leung and Tak Mak for the generous gift of CD8−/− mice, and Angel Porgador and Eli Gilboa for the generous gift of the E.G7–OVA cell line. This work was supported in part by grants from the National Institutes of Health (AI 40682, AI 47078, and AR 44850) and by Dynavax Technologies. H.J.C. is supported by a research resident fellowship from the Sam and Rose Stein Institute for Research on Aging (La Jolla, CA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyal Raz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, H., Takabayashi, K., Cheng, PM. et al. Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat Biotechnol 18, 509–514 (2000). https://doi.org/10.1038/75365

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing