Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Inducible isopentenyl transferase as a high-efficiency marker for plant transformation

An Erratum to this article was published on 01 October 1999

Abstract

Overexpression of the isopentenyltransferase gene (ipt) from the Ti-plasmid of Agrobacterium tumefaciens increases cytokinin levels, leading to generation of shoots from transformed plant cells. When combined with a dexamethasone-inducible system for controlling expression, ipt expression can be used to select for transgenic regenerants without using an antibiotic-resistance marker. The combined system allows efficient cointroduction of multiple genes (in addition to ipt) and produces transgenic plants without morphological or developmental defects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dex-dependent regeneration of tobacco and lettuce shoots.
Figure 2: Luciferase activities in tobacco and lettuce regenerants.
Figure 3: Northern blot analysis of ipt and luc transcripts in tobacco.
Figure 4: Figure 4. Segregation and Southern blot analysis of the luc gene in transgenic tobacco.

Similar content being viewed by others

References

  1. Mok, D.W.S. & Mok, M.C. in Cytokinins: Chemistry activity and function.(eds Mok, D.W.S. & Mok, M.C.). 155– 166. (CRC Press, Boca Raton, FL; 1994).

    Google Scholar 

  2. Davies, P.E. (ed.). Plant hormones and their role in plant growth and development. (Kluver Academic Publisher, Dordrecht, The Netherlands; 1995).

    Google Scholar 

  3. Coenen, C. & Lomax, T. Auxin-cytokinin interaction in higher plants: old problems and new tools. Trends Plant Sci. 2, 351–355 (1997).

    Article  CAS  Google Scholar 

  4. Kuraishi, S. & Okumura F.S. The effect of kinetin on leaf growth. Botantical Magazine of Tokyo. 69, 300– 306 (1956).

    Article  CAS  Google Scholar 

  5. Wingler A., von Schaewen, A., Leegood, R.C., Lea, P.J. & Quick,W.P. Regulation of leaf senescence by cytokinin, sugars, and light. Plant Physiol. 116 , 329–335 (1998).

    Article  CAS  Google Scholar 

  6. Gan, S. & Amasino, R.M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270 , 1986–1988 (1995).

    Article  CAS  Google Scholar 

  7. Chaudhury, A.M., Letham, S., Craig, S. & Dennis, E.S. apm1—a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J. 4, 907–916 ( 1993).

    Article  CAS  Google Scholar 

  8. Miklashevichs, E. & Walden R. Plant mutants with altered responses to cytokinin. Physiologia Plantarum. 100, 528–533 (1997).

    Article  CAS  Google Scholar 

  9. Cline M.G. The role of hormones in apical dominance. New approaches to an old problem in plant development. Plant Physiol. 90, 230–237 (1991).

    Article  Google Scholar 

  10. Skoog, F. & Miller, C.O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11, 118–131 ( 1957).

    CAS  PubMed  Google Scholar 

  11. Sachs, T. & Thimmann, K.V. The role of auxins and cytokinins in the release of buds from apical dominance. Am. J. Bot. 54, 136–144 (1967).

    Article  CAS  Google Scholar 

  12. Akiyoshi, D.E., Klee, H., Amasino, R.M., Nester E.W. & Gordon M.P. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA. 81, 5994–5998 ( 1984).

    Article  CAS  Google Scholar 

  13. Barry, G.F., Rogers, S.G., Fraley, R.T. & Brand, L. Identification of a cloned cytokinin biosynthetic gene. Proc. Natl. Acad. Sci. USA. 81, 4776–4780 (1984).

    Article  CAS  Google Scholar 

  14. Tran Thanh Van, K.M. Control of morphogenesis in in vitro cultures. Ann. Rev. Plant Physiol. 32, 292–311 ( 1981).

    Article  Google Scholar 

  15. Schmigocki, A.C & Owens, L.D. Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc. Natl. Acad. Sci. USA 85, 5131 –5135 (1988).

    Article  Google Scholar 

  16. Medford, J.I., Horgan, B.R., El-Sawi, Z. & Klee H.J. Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1, 403–413 (1989).

    Article  CAS  Google Scholar 

  17. Klee, H., Horsch, R., & Rogers, S. Agrobacterium-mediated plant transformation and its further applications to plant biology. Ann. Rev. Plant Physiol. 38, 467–486 ( 1987).

    Article  CAS  Google Scholar 

  18. Ebinuma, H., Sugita, K., Matsunaga, E. & Yamakado, M. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc. Natl. Acad. Sci. USA. 94, 2117 –2121 (1997).

    Article  CAS  Google Scholar 

  19. Redig, P., Schmülling, T. & Van Onckelen, H. Analysis of cytokinin metabolism in ipt transgenic tobacco by liquid chromatography-tandem mass spectrometry. Plant Physiol. 112, 141– 148 (1996).

    Article  CAS  Google Scholar 

  20. McKenzie, M.J., Mett, V., Reynolds, P.H.S. & Jameson, P.E. Controlled cytokinin induction in transgenic tobacco using a copper inducible promoter. Plant Physiol. 116, 969– 977 (1998).

    Article  CAS  Google Scholar 

  21. Faiss, M., Zalubilova, J., Strnad, M. & Schmülling T. Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants. Plant J. 12, 401–415 ( 1997).

    Article  CAS  Google Scholar 

  22. Gatz, C., Frohberg, C. & Wendenburg, R. Stringent repression and homogenous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J. 2, 397– 404 (1992).

    CAS  PubMed  Google Scholar 

  23. Aoyama, T. & Chua, N.-H. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11, 605–612 (1997).

    Article  CAS  Google Scholar 

  24. Waldron, C. et al. Resistance to hygromycin B: a new marker for plant transformation studies. Plant. Mol. Biol. 5, 103– 108 (1985).

    Article  CAS  Google Scholar 

  25. Millar, A.J., Short, S.R., Hiratsuka, K, Chua, N.-H. & Kay, S.A. Firefly luciferase as a reporter of regulated gene expression in higher plants. Plant Mol. Biol. Rep. 10, 324–337 ( 1992).

    Article  CAS  Google Scholar 

  26. Benfey, P.N. & Chua, N.-H. The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250, 956–966 ( 1990).

    Article  Google Scholar 

  27. Goliber, T., Kessler, S., Chen, J.J., Barathan, G. & Sinha, N. Genetic, molecular and morphological analysis of compound leaf development. Curr. Top Dev. Biol. 43, 259–290 (1999).

    Article  CAS  Google Scholar 

  28. Kakimoto, T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274, 982–985 (1996).

    Article  CAS  Google Scholar 

  29. Fraley, R.T., Rogers, S.G. & Horsch, R.B. Genetic transformation in higher plants. CRC Crit. Rev. Plant Sci. 4, 1–45 (1985).

    Article  Google Scholar 

  30. Lotan, T. et al. Arabidopsis leafy cotyledon1 is sufficient to induce embryo development in vegetative cells. Cell 93, 1195– 1205 (1998).

    Article  CAS  Google Scholar 

  31. Horsch R. et al. A simple and general method for transferring genes into plants. Science 227, 1229–1231 ( 1985).

    Article  CAS  Google Scholar 

  32. Curtis, I.S., Power, J.B., Blackhall, N.W., de Laat, A.M.M. & Davey, M.R. Genotype-independent transformation of lettuce using Agrobacterium tumefaciens. J. Exp. Bot. 45, 1441–1449 ( 1996).

    Article  Google Scholar 

  33. Michelet, B. & Chua, N.-H. Improvement of Arabidopsis mutant screens based on luciferase imaging in plants. Plant Mol. Biol. Rep. 14, 320–329 ( 1996).

    Article  Google Scholar 

  34. Beavan, M.W. & Chilton, M.-D. T-DNA of the Agrobacterium Ti and Ri plasmids. Annu. Rev. Genet 16, 357–384 (1982).

    Article  Google Scholar 

  35. Ishige, F., Takaichi, M., Foster, R., Cua, N.-H. & Oeda, K. A G-box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. Plant J. 18, 1–6 (1999).

    Article  Google Scholar 

  36. Pietrzak, M., Shillito R.D., Hohn, T. & Potrykus, I. Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucleic Acids Res. 14, 5857–5868 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Simon G. Møller for critical reading of the manuscript. T.K. was supported by an International Human Frontier Science Program Organization grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Hai Chua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunkel, T., Niu, QW., Chan, YS. et al. Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nat Biotechnol 17, 916–919 (1999). https://doi.org/10.1038/12914

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing