Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Plants ectopically expressing the ironbinding protein, ferritin, are tolerant to oxidative damage and pathogens

An Erratum to this article was published on 01 April 1999

Abstract

Transgenic tobacco plants that synthesize alfalfa ferritin in vegetative tissues—either in its processed form in chloroplasts or in the cytoplasmic nonprocessed form—retained photosynthetic function upon free radical toxicity generated by iron excess or paraquat treatment. Progeny of transgenic plants accumulating ferritin in their leaves exhibited tolerance to necrotic damage caused by viral (tobacco necrosis virus) and fungal (Alternaria alternata, Botrytis cinerea) infections. These transformants exhibited normal photosynthetic function and chlorophyll content under greenhouse conditions. We propose that by sequestering intracellular iron involved in generation of the very reactive hydroxyl radicals through a Fenton reaction, ferritin protects plant cells from oxidative damage induced by a wide range of stresses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunodetection of ferritin in tobacco plants overexpressing the MsFer cDNA.
Figure 2: Light–activated fluorescence in transformed and control (SR1) tobacco plants after iron or paraquat treatment.
Figure 3: Loss of chlorophylls from leaf discs treated with paraquat.
Figure 4

Similar content being viewed by others

References

  1. Prince, A.H., Atherton, N.M., and Headry, G.A.F. 1989. Plant under drought–stress generate activated oxygen. Free Rad. Res. Commun. 8 :61–66.

    Article  Google Scholar 

  2. Foyer, C.H., Descourviéres, P., and Kunert, K.J. 1994. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ. 17:507– 523.

    Article  CAS  Google Scholar 

  3. Hammond–Kosack, K.E. and Jones, J.D.G. 1996 . Resistance gene–dependent plant defense responses. The Plant Cell 8:1773–1791.

    Article  Google Scholar 

  4. Lamb, C. and Dixon, R.A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. and Plant Mol. Biol. 48:251–275.

    Article  CAS  Google Scholar 

  5. Halliwell, B. and Gutteridge, J.M.C. 1986. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246: 501–514.

    Article  CAS  Google Scholar 

  6. Henle, E.S. and Linn, S. 1997. Formation, prevention, and repair of DNA damage by iron/hydrogene peroxide. J. Biol. Chem. 272:19095–19098.

    Article  CAS  Google Scholar 

  7. Repine, J.E., Fox, R.B., and Berger, E. 1981. Hydrogene peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxil radicals. J. Biol. Chem. 256:7094– 7096.

    CAS  PubMed  Google Scholar 

  8. Theil, E.C. 1987. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem. 56:289–315.

    Article  CAS  Google Scholar 

  9. Lobréaux, S. and Briat, J–F. 1991. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem. J. 274:601–606.

    Article  Google Scholar 

  10. Lobréaux, S. Hardy, T., and Briat, J–F. 1993. Abscisic acid is involved in the iron–induced synthesis of maize ferritin. EMBO J. 12:651–657.

    Article  Google Scholar 

  11. Balla, Gy., Jacob, H.S., Balla, J., Rosenberg, M., Narth, K., Apple, F. et al. 1992. Ferritin: a cytoprotective antioxidant strategem of endothelium. J. Biol. Chem. 267:18148–18153.

    CAS  PubMed  Google Scholar 

  12. Vile, G.F. and Tyrrell, R.M. 1993. Oxidative stress resulting from ultraviolet a irradiation of human skin fibroblasts leads to a heme oxygenase–dependent increase in ferritin. J. Biol. Chem. 268:14678–14681.

    CAS  PubMed  Google Scholar 

  13. Cairo,G., Tacchini, L., Pogliaghi, G., Anzon, E., Tomasi, A., and Bernelli–Zazzera, A. 1995. Induction of ferritin synthesis by oxidative stress. Transcriptional and post–translational regulation by expansion of the free iron pool. J. Biol. Chem. 270:700–703.

    Article  CAS  Google Scholar 

  14. Lobréaux, S., Yewdall, J.S., Briat, J–F., and Harrison, P.M. 1992. Amino acid sequence and predicted three–dimensional structure of pea seed (Pisum sativum) ferritin. Biochem. J. 288:931–939.

    Article  Google Scholar 

  15. Kampfenkel, K.M., van Montagu, M., and Inzé, D. 1995. Effects of iron excess on nicotiana plumbaginifolia plants. Implications to oxidative stress. Plant Physiol. 107:725–735.

    Article  CAS  Google Scholar 

  16. Babbs, C.E., Pham, J.A., and Coolbaugh, R.C. 1989. Lethal hydroxyl radical production in paraquat treated plants. Plant Physiol. 90:1267–1270.

    Article  CAS  Google Scholar 

  17. Perl, A., Perl–Treves, R., Galili, S., Aviv, D., Shalgi, E., Malkin, S. et al. 1993. Enhanced oxidative stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases. Theor. Appl. Genet. 85:568–576.

    Article  CAS  Google Scholar 

  18. Barna, B., Ádám, A., and Király, Z. 1993. Juvenility and resistance of a superoxide–tolerant plant to diseases and other stresses. Naturwissenschaften 80:420– 422.

    Article  Google Scholar 

  19. Vass I., Sass L., Spetea, C., Bakou, A., Ghanotakis, D.F., and Petrouleas, V. 1996. UV–B–induced inhibition of photosytem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components. Biochemistry 35:8964–8973.

    Article  CAS  Google Scholar 

  20. Low, P. and Merida, J. 1996. The oxidative burst in plant defence: function and signal transduction. Physiol. Plant. 96:533–542.

    Article  CAS  Google Scholar 

  21. Peng, M. and Kuc, J. 1992. Peroxidase–generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology. 82:696 –699.

    Article  CAS  Google Scholar 

  22. Ouf, M.F., Gazar, A.A., Shehata, Z.A., Abdou, El S., Király, Z., and Barna, B. 1993. The effect of superoxide anion on germination and infectivity of wheat stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. and Henn.) uredospores. Cereals Research Communications 21:31–37.

    CAS  Google Scholar 

  23. Király, Z., El–Zahaby, H., Gala, A., Abdou, S., Ádám, A., Barna, B. et al. 1993. Effect of oxygen free radicals on plant pathogenic bacteria and fungi and on some plant diseases, pp. 9–19, in Oxygen free radicals and scavengers in the natural sciences, Mózsik, Gy., Emerit, I., Fehér, J., Matkovics, B., and Vincze, Á. (eds.). Akadémiai Kiadó, Budapest, Hungary.

  24. Elstner, E.F. 1982. Oxygen activation and oxygen toxicity. Ann. Rev. Plant Physiol. 33:73–96.

    Article  CAS  Google Scholar 

  25. Sutherland, M.W. 1991. The generation of oxygen free radical during host plant response to infection. Physiol. Molec. Plant Pathol. 39:79–93.

    Article  CAS  Google Scholar 

  26. Elstner, E.F. and Osswald, W. 1994. Mechanism of oxygen activation during plant stress, pp. 131– 154, in Oxygen and environmental stress in plants, Crawford, R.M.M., Hendry, G.A.F., and Goodman, B.A. (eds.). The Royal Society of Edinburgh, Edinburgh, Scotland.

    Google Scholar 

  27. Baker, C.J. and Orlandi, E.W. 1995. Active oxygen in plant pathogenesis. Ann. Rev. Phytopathol. 33:299–321.

    Article  CAS  Google Scholar 

  28. Bowler, C., Slooten, L., Vanderbrande, S., De Rycke, R., Bottermann, J., Sybesma, C. et al. 1991. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 10:1723– 1733.

    Article  CAS  Google Scholar 

  29. Rennenberg, H. and Polle, A. 1994. Protection from oxidative stress in transgenic plants. Biochem. Soc. Trans. 22:936–940.

    Article  CAS  Google Scholar 

  30. Allen, R. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107:1049– 1054.

    Article  CAS  Google Scholar 

  31. Mullineaux, P.M. and Creissen G.P. 1996 . Opportunities for the genetic manipulation of antioxidants in plant foods. Biochem. Soc. Trans. 24:829 –835.

    Article  CAS  Google Scholar 

  32. Thomas, C.E. and Aust, S.D. 1986. Reductive release of iron from ferritin by cation free radicals of paraquat and other bipyridyls. J. Biol. Chem. 261:13064– 13070.

    CAS  PubMed  Google Scholar 

  33. Zer, H., Peleg, I., and Chevion, M. 1994. The protective effect of desferrioxamine on paraquat–treated pea (Pisum sativum). Physiol. Plantarum. 92:437–442.

    Article  CAS  Google Scholar 

  34. Fobis–Loisy, I., Loridon, K., Lobreaux, S., Lebrun, M., and Briat J.–F. 1995. Structure and differential expression of two maize ferritin genes in response to iron and abscisic acid. Eur. J. Biochem. 231: 609–619.

    Article  Google Scholar 

  35. Bauminger E., Harrison P.M., Hechel D., Nowik I., and Treffry A. 1991. Mössbauer spectroscopic investigation of structure–function relations in ferritins. Biochim. Biophys. Acta. 1118:48–58.

    Article  CAS  Google Scholar 

  36. Andrews, S.C., Arosio, P., Bottke, W., Briat, J–F., von Darl, M., Harrison, P.M. et al. 1992. Structure, function and evolution of ferritins. J. Inorg. Biochem. 47:161– 174.

    Article  CAS  Google Scholar 

  37. Briat J.–F. and Lobreaux S. 1997 . Iron transport and storage in plants. Trends in Plant Sci. 2:187–193.

    Article  Google Scholar 

  38. van Wuytswinkel, O., Savino, G., and Briat, J.F. 1995. Purification and characterisation of recombinant pea seed ferritins expressed in E. coli: influence of N–terminus deletion on protein solubility and core formation in vitro. Biochem J. 305:253–261.

    Article  CAS  Google Scholar 

  39. Mitra, A. and Zhang, Z. 1994. Expression of human lactoferrin cDNA in tobacco cells produces antibacterial protein(s). Plant Physiol. 106:977– 981.

    Article  CAS  Google Scholar 

  40. Claes, B., Smalle, J., Dekeyser, R., van Montagu, M., and Caplan, A. 1991. Organ–dependent regulation of a plant promoter isolated from rice by 'promoter–trapping' in tobacco. Plant J. 1:15–26.

    Article  CAS  Google Scholar 

  41. Maes, M. and Messens, E. 1992. Phenol as grinding material in RNA preparations. Nucleic. Acids Res. 20:4374–4375.

    Article  CAS  Google Scholar 

  42. Sambrook, J., Fritsch, F.F., and Maniatis, T., 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  43. Nechustai, R. and Nelson, N. 1985. Biogenesis of photosystem I reaction center during greening of oat, bean and spinach leaves. Plant. Mol. Biol. 4:377– 384.

    Article  Google Scholar 

  44. Journet, E–P. 1987 Isolation of plastids from buds of cauliflower. Methods Enzymol. 148:234– 240.

    Article  CAS  Google Scholar 

  45. Arnon, D. 1949. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24:1– 5.

    Google Scholar 

Download references

Acknowledgements

The authors thank Keczánné Czakó Zsuzsa for the excellent work during the preparation of the manuscript. This work was supported by the Körber Foundation, Hamburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dénes Dudits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deák, M., Horváth, G., Davletova, S. et al. Plants ectopically expressing the ironbinding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol 17, 192–196 (1999). https://doi.org/10.1038/6198

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing