Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Increased potato tuber size resulting from apoplastic expression of a yeast invertase

Abstract

The role of sucrose cleavage in determining sink strength in potato was investigated by generating transgenic potato plants that expressed a yeast invertase in either the cytosol or apoplast of tubers. Cytosolic localization gave rise to a reduction in tuber size and an increase in tuber number per plant whereas apoplastic targeting led to an increase in tuber size and a decrease in tuber number per plant. Sink organ size can be manipulated through modification of sucrose metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. ap Rees, T. and Morrell, S. 1990. Carbohydrate metabolism in developing potatoes. Am. Potato J. 67: 835–847.

    Article  CAS  Google Scholar 

  2. Chourey, P.S. and Nelson, O. 1976. The enzymatic deficiency conditioned by the shrunken-1 mutation in maize. Biochem. Genet. 14: 1041–1055.

    Article  CAS  Google Scholar 

  3. Zrenner, R., Salanoubat, M., Willmitzer, L. and Sonnewald, U. 1995. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 7: 97–107.

    Article  CAS  Google Scholar 

  4. Oparka, K.J., Viola, R., Wright, K.M. and Prior, D.A.M. 1992. Sugar metabolism and transport in the potato tuber, pp. 91–114. in Carbon partitioning within and between organisms. Pollock, C., Farrar, J., and Gordon, A. (eds.) Bios Scientific Publishers, Oxford, UK.

    Google Scholar 

  5. von Schaewen, A., Stitt, M., Schmidt, R. Sonnewald, U. and Willmitzer, L. 1990. Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J. 9: 3033–3044.

    Article  CAS  Google Scholar 

  6. Sonnewald, U., Brauer, M., von Schaewen, A., Stitt, M. and Willmitzer, L. 1991. Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or apoplast: A powerful tool for studying sucrose metabolism and sink/source interactions. Plant J. 1: 95–106.

    Article  CAS  Google Scholar 

  7. Büssis, D., Heineke, D., Sonnewald, U., Willmitzer, L., Raschke, K. and Heldt, H.W. 1997. Solute accumulation and decreased photosynthesis in leaves of potato plants expressing yeast-derived invertase either in the apoplast, vacuole, or cytosol. Planta 202: 126–136.

    Article  Google Scholar 

  8. Keil, M., Sánchez-Serrano, J., Schell, J. and Willmitzer, L. 1986. Primary structure of a proteinase inhibitor II gene from potato (Solanum tuberosum) . Nucleic Acid Res. 14: 5641–5650.

    Article  CAS  Google Scholar 

  9. Rocha-Sosa, M., Sonnewald, U., Frommer, W., Stratmann, M., Schell, J. and Willmitzer, L. 1989. Both developmental and metabolic signals activate the expression of a class I patatin gene. EMBO J. 8: 23–30.

    Article  CAS  Google Scholar 

  10. Dietze, J., Blau, A. and Willmitzer, L. 1995. Agrobacterium-mediated transformation of potato (Solanum tuberosum), pp. 24–29. in Gene transfer to plants. Potrykus, I. and Spangenberg, G. (eds.) Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  11. Münch, E. 1927. Versuche über den Saftkreislauf. Ber. Deutsch. Bot. Ges. 45: 340–356.

    Google Scholar 

  12. Ho, L.C. 1988. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39: 355–378.

    Article  CAS  Google Scholar 

  13. Giaquinta, R.T. 1983. Phloem loading of sucrose. Ann. Rev. Plant Physiol. 34: 347–387.

    Article  CAS  Google Scholar 

  14. Thorpe, M.R. and Minchin, P.E.H. 1996. Mechanisms of long- and short-distance transport from sources to sinks in Photoassimilate distribution in plants and crops: Source-sink relationships. Zamski, E. and Schaffer, A.T. (eds.) Marcel Dekker Inc., New York

    Google Scholar 

  15. Tomos, A.D., Leigh, R.A., Palta, J.A. and Williams, J.H.H. 1992. Sucrose and water relations, pp. 71–90. in Carbon partitioning within and between organisms. Pollock, C., Farrar, J., and Gordon, A. (eds.) Bios Scientific Publishers, Oxford, UK.

    Google Scholar 

  16. Koch, K.E. 1996. Carbohydrate-modulated gene expression in plants. Ann. Rev. Plant Phys. Plant Mol. Biol. 47: 509–540.

    Article  CAS  Google Scholar 

  17. Trumbly, R.J. 1992. Glucose repression in the yeast Saccharomyces cerevisiae . Mol. Microbiol. 6: 15–21.

    Article  CAS  Google Scholar 

  18. Pringle, J.R. and Hartwell, L.H. 1981. Saccharomyces cell cycle, pp. 97–142. in Molecular biology of the yeast Saccharomyces. Strathern, J.N., Jones, E.W., and Broach, R.R. (eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  19. Gillies, R.J., Ugurbil, K., Hollander, J.A.D. and Shulman, R.G. 1981. 31P NMR studies of intracellular pH and phosphate metabolism during cell division cycle of Saccharomyces cerevisiae . Proc. Natl. Acad. Sci. USA 78: 2125–2129.

    Article  CAS  Google Scholar 

  20. Granot, D. and Snyder, M. 1991. Glucose induces cAMP-independent growth-related changes in stationary-phase cells of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88: 5724–5728.

    Article  CAS  Google Scholar 

  21. Granot, D. and Snyder, M. 1993. Carbon source induces growth of stationary phase yeast cells independent of carbon source metabolism. Yeast 9: 465–479.

    Article  CAS  Google Scholar 

  22. Weber, H., Borisjuk, L. Wobus, U. 1996. Controlling seed development and seed size in Vicia faba: A role for seed coat-associated invertases and carbohydrate state. Plant J. 14: 823–834.

    Article  Google Scholar 

  23. Miller, M.E. and Chourey, P.S. 1992. The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell 4: 297–305.

    Article  CAS  Google Scholar 

  24. Klann, E.M., Hall, B. and Bennett, A.B. 1996. Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol. 112: 1321–1330.

    Article  CAS  Google Scholar 

  25. Abel, G.J.W., Springer, F., Willmitzer, L. and Koflmann, J. 1996. Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solanum tuberosum L.). Plant J. 10: 981–991.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonnewald, U., Hajirezaei, MR., Kossmann, J. et al. Increased potato tuber size resulting from apoplastic expression of a yeast invertase. Nat Biotechnol 15, 794–797 (1997). https://doi.org/10.1038/nbt0897-794

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0897-794

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing