Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mining with Microbes

Abstract

Microbes are playing increasingly important roles in commercial mining operations, where they are being used in the “bioleaching” of copper, uranium, and gold ores. Direct leaching is when microbial metabolism changes the redox state of the metal being harvested, rendering it more soluble. Indirect leaching includes redox chemistry of other metal cations that are then coupled in chemical oxidation or reduction of the harvested metal ion and microbial attack upon and solubilization of the mineral matrix in which the metal is physically embedded. In addition, bacterial cells are used to detoxify the waste cyanide solution from gold-mining operations and as “absorbants” of the mineral cations. Bacterial cells may replace activated carbon or alternative biomass. With an increasing understanding of microbial physiology, biochemistry and molecular genetics, rational approaches to improving these microbial activities become possible

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Australian Mineral Foundation. 1993. “Biomine '93” Proceedings of the International Conference and workshop on Applications of Biotechnology to the Minerals Industry. Adelaide, South Australia, March 22-23, 1993.

  2. Australian Mineral Foundation. 1994. “Biomine '94” Proceedings of the International Conference and workshop on Applications of Biotechnology to the Minerals Industry. Perth, West Australia, 1994.

  3. Torma, A.E., Wey, J.E., Lakshmanan, V.I., Apel, M.L., Brierley, C.L. (Eds.). 1993. Biohydrometallurgical Technologies, Volume I, Bioleaching Processes, 769 pp.; and Volume II, Fossil Energy Materials, Bioremediation, and Microbial Physiology, 794 pp. The Minerals, Metals & Materials Society, Warrendale, PA.

    Google Scholar 

  4. Ehrlich, H.L. and Brierley, C.L. (Eds.). 1990. Microbial Mineral Recovery, 454 pp. McGraw-Hill, New York.

  5. Barrett, J., Hughes, M.N., Karavaiko, G.I. and Spencer, P.A. 1993. Metal Extraction by Bacterial Oxidation of Minerals, 191 pp. Ellis Horwood, New York.

  6. Livesey-Goldblatt, E., Norman, P. and Livesey-Goldblatt, D.R. 1983. Gold recovery from arsenopyrite/pyrite ore by bacterial leaching and cyanidation, p. 627–641. In: Recent Progress in Biohydrometallurgy. Rossi, G. and Torma, A.E. (Eds.). Azzociazione Mineraria Sarda, Iglesias, Italy.

    Google Scholar 

  7. van Aswegen, P.C., Haines, A.K. and Marais, H.J. 1988. Design and operation of a commercial bacterial oxidation plant at Fairview. Randol Perth Gold 88, pp. 144–147.

  8. Aswegen, P.C., Godfrey, M.W., Miller, D.M. and Haines, A.K. 1991. Developments and innovations in bacterial oxidation of refractory ores. Minerals and Metallurgical Processing 8: 188–192.

    Google Scholar 

  9. Aswegen, P.C. and Haines, A.K. 1988. Bacteria enhance gold recovery. International Mining. May issue, pp. 19–23.

    Google Scholar 

  10. Kelly, D.P. 1988. Evolution of the understanding of the microbiology and biochemistry of the mineral leaching habitat, p. 3–14. In: Biohydrometallurgy-87. Norris, P. R. and Kelly, D. P. (Eds.). Science and Technology Letters, Kew, Surrey, UK.

    Google Scholar 

  11. Harrison, A.P. 1984. The acidophilic Thiobacilli and other acidophilic bacteria that share their habitat. Annu. Rev. Microbiol. 38: 265–292.

    Article  CAS  PubMed  Google Scholar 

  12. Karavaiko, G.I., Golovacheva, R.S., Pivovarova, T.A., Tzaplina, I.A. and Vartanjan, N.S. 1988. Thermophilic bacteria of the genus Sulfobacillus, p. 29–41. In: Biohydrometallurgy-87, Norris, P. R. and Kelly, D. P. (Eds.). Science and Technology Letters, Kew, Surrey, UK.

    Google Scholar 

  13. Norris, P.R. and Parrott, L. 1986. High temperature, mineral concentrate dissolution with Sulfolobus, p.355–365. In: Fundamental and Applied Biohydrometallurgy. Lawrence, R. W., Branion, R. M. R. and Ebner, H. G. (Eds.). Elsevier, Amsterdam.

    Google Scholar 

  14. Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221–271.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Torma, A.E. 1986. Biohydrometallurgy as an emerging technology, p. 49–63. In: Biotechnology Engineering Symposium, Vol. 16. Ehrlich, H. L. and Holmes, D. S. (Eds.). John Wiley and Sons, New York.

    Google Scholar 

  16. McCready, R.G.L. 1988. Progress in the bacterial leaching of metals in Canada, p. 177–195. In: Biohydrohydrometallurgy-87, Norris, P. R. and Kelly, D. P. (Eds.). Science and Technology Letters, Kew, Surrey, UK.

    Google Scholar 

  17. DiSpirito, A.A. and Tuovinen, O.H. 1982. Uranous ion oxidation and carbon dioxide fixation by Thiobacillus ferrooxidans. Arch. Microbiol. 133: 28–32.

    Article  CAS  Google Scholar 

  18. Kelly, D.P., Norris, P.R. and Brierley, C.L. 1979. Microbiological methods for the extraction and recovery of metals, p. 263–308. In: Microbial Technology: Current State, Future Prospects. Bull, A. T, Ellwood, D. C. and Ratledge, C. (Eds.). Cambridge University Press, Cambridge, UK.

    Google Scholar 

  19. Dew, D.W., Miller, D.M. and van Aswegen, P. C. 1993. GENMIN's commercialization of the bacterial oxidation process for the treatment of refractory gold concentrates. Randol Gold Forum, Beaver Creek, 7–9 September, pp. 229–237.

  20. Chapman, J.T., Marchant, P.B., Lawrence, R.W. and Knopp, R. 1993. Biooxidation of a refractory gold bearing high arsenic sulphide concentrate: a pilot study. FEMS Microbiol. Rev. 11: 243–252.

    Article  CAS  Google Scholar 

  21. Brierley, C.L. 1990. Bioremediation of metal-contaminated surface and groundwaters. Geomicrobiol. J. 8: 201–223.

    Article  CAS  Google Scholar 

  22. Whitlock, J.L. and Smith, G.R. 1989. Operation of Homestake's cyanide biodegradation wastewater system based on multi-variable trend analysis, p. 613–625. In: Biohydrometallurgy-1989. Jackson Hole, Wyoming.

    Google Scholar 

  23. Rawlings, D.E., Mjoli, N.M. and Woods, D.R. 1991. The cloning and structure of genes from the autotrophic biomining bacterium Thiobacillus ferrooxidans, p. 215–237. In: Advances in Technology, Vol. 2. Greenaway, P. J. (Ed.). JAI Press Ltd, London.

    Google Scholar 

  24. Rawlings, D.E. and Woods, D.R. 1995. Developing of improved biomining bacteria, p. 63–84. In: Bioextraction and Biodeterioriation of Metals. Gaylarde, C. and Videla, H. (Eds.). Cambridge University Press, Cambridge,UK.

    Google Scholar 

  25. Kusano, T., Sugawara, K., Inoue, C., Takeshima, T., Numata, M. and Shiratori, T. 1992. Electrotransformation of Thiobacillus ferrooxidans with plasmids containing a mer determinant. J. Bacteriol. 174: 6617–6623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng, J.-B., Yan, W.M. and Bao, X.-Z. 1994. Plasmid and transposon transfer to Thiobacillus thiooxidans. J. Bacteriol. 176: 2892–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin, S.M., Yan, W.-M. and Wang, Z.N. 1992. Transfer of IncP plasmids to extremely acidophilic Thiobacillus ferrooxidans. Appl. Envir. Microbiol. 58: 429–430.

    CAS  Google Scholar 

  28. Peng, J.-B., Yan, W.-M. and Bao, X.-Z. 1994. Expression of heterogenous arsenic resistance genes in the obligately autotrophic biomining bacterium Thiobacillus ferrooxidans. Appl. Envir. Microbiol. 60: 2653–2656.

    CAS  Google Scholar 

  29. Rawlings, D.E. and Kusano, T. 1994. The molecular genetics of Thiobacillus ferrooxidans. Microbiol. Rev. 58: 39–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Inoue, C., Sugawara, Shiratori, K., Kusano, T. and Kitagawa, Y. 1989. Nucleotide sequence of the Thiobacillus ferrooxidans chromosomal gene encoding mercuric reductase. Gene 84: 47–54.

    Article  CAS  PubMed  Google Scholar 

  31. Inoue, C., Sugawara, K. and Kusano, T. 1991. The regulatory gene of Thiobacillus ferrooxidans is spaced apart from the mer structural genes. Molec. Microbiol. 5: 2707–2718.

    Article  CAS  Google Scholar 

  32. Kusano, T., Takeshima, T., Inoue, C. and Sugawara, K. 1991. Evidence for two sets of structural genes coding for ribulose bisphosphate carboxylase in Thiobacillus ferrooxidans. J. Bacteriol. 173: 7313–7323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kusano, T., Takeshima, T., Sugawara, K., Inoue, C., Shiratori, T., Yano, T., Fukumori, Y. and Yamanaka, T. 1992. Molecular cloning of the gene encoding Thiobacillus ferrooxidans Fe(II) oxidase. J. Biol. Chem. 267: 11242–11247.

    CAS  PubMed  Google Scholar 

  34. Lane, D.J., Harrison, A.P. Jr., Stahl, D., Pace, B., Giovannoni, S.J., Olsen, G.J. and Pace, N.R. 1992. Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J. Bacteriol. 174: 269–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sugio, T., Domatsu, C., Munakata, O., Tano, T. and Imai, K. 1985. Role of a ferric reducing system in sulfur oxidation of Thiobacillus ferrooxidans Appl. Environ. Microbiol. 49: 1401–1406.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cervantes, C., Ji, G., Ramírez, J.L. and Silver, S. 1994. Resistance to arsenic compounds in microorganisms. FEMS Microbiol. Rev. 15: 355–367.

    Article  CAS  PubMed  Google Scholar 

  37. Silver, S. and Walderhaug, M. 1992. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol. Rev. 56: 195–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Silver, S., Budd, K., Leahy, K.M., Shaw, W.V., Hammond, D., Novick, R.P., Willsky, G.R., Malamy, M.H. and Rosenberg, H. 1981. Inducible plasmid-determined arsenate, arsenite and antimony(III) in Escherichia coli and Slaphylococcus aureus. J. Bacteriol. 146: 983–996.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rawlings, D.E., Pretorius, L.-M. and Woods, D.R. 1984. Construction of arsenic-resistant Thiobacillus ferrooxidans recombinant plasmids and the expression of autotrophic plasmid genes in a heterotrophic cell-free-system. J. Biotechnology 1: 129–133.

    Article  CAS  Google Scholar 

  40. Silver, S., Ji, G., Bröer, S., Dey, S., Dou, D. and Rosen, B.P. 1993. Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacterial plasmids. Molec. Microbiol. 8: 637–642.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Douglas E. Rawlings or Simon Silver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawlings, D., Silver, S. Mining with Microbes. Nat Biotechnol 13, 773–778 (1995). https://doi.org/10.1038/nbt0895-773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0895-773

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing