Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extremozymes: Expanding the Limits of Biocatalysis

Abstract

The study of enzymes isolated from organisms inhabiting unconventional ecosystems has led to the realization that biocatalysis need not be constrained to mild conditions and can be considered at pH's, temperatures, pressures, ionic and solvent environments long thought to be destructive to biomolecules. Parallel to this, it has been demonstrated that even conventional enzymes will catalyze reactions in solvents other than water. However, the intrinsic basis for biological function under extreme conditions is only starting to be addressed, as are associated applications. This was the focus of a recent NSF/NIST-sponsored workshop on extremozymes. Given the information acquired from the study of extremozymes, modification of enzymes to improve their ranges of stability and activity remains a possibility. Ultimately, by expanding the range of conditions suitable for enzyme function, new opportunities to use biocatalysis will be created.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Flam, F. 1994. The chemistry of life at the margins. Science 265: 471–472.

    Article  CAS  Google Scholar 

  2. Hodgson, J. 1994. The changing bulk catalyst market. Bio/Technology 12: 789–790.

    CAS  PubMed  Google Scholar 

  3. Matin, A. 1990. Keeping a neutral cytoplasm; the bioenergetics of obligate aci-dophiles. FEMS Microbiol. Rev. 75: 307–318.

    Article  CAS  Google Scholar 

  4. Peeples, T.L. and Kelly, R.M. 1995. Bioenergetic response of the extreme thermoaddophile Metallosphaera sedula to thermal and nutritional stresses. Appl. Environ. Microbiol. 61: 2314–2321.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fiala, G. and Stetter, K.O. 1986. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch. Microbiol. 145: 56–61.

    Article  CAS  Google Scholar 

  6. Davail, S., Feller, G., Narinx, E. and Gerday, C. 1994. Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile sub-tilisin from the Antarctic psychrophile Bacillus TA41. J. Biol. Chem. 269: 17448–17453.

    CAS  PubMed  Google Scholar 

  7. Jones, W.J., Leigh, J.A., Leigh, J.A., Mayer, E., Woese, C.R., and Wolfe, R.S. 1983. Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136: 254–61.

    Article  CAS  Google Scholar 

  8. Li, Y., Mandelco, L. and Wiegel, J. 1993. Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum, sp. nov. Int. J. Sys. Bacteriol. 43: 450–460.

    Article  Google Scholar 

  9. Huber, R., Spinnler, C., Gambacorta, A. and Stetter, K.O. 1989. Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst. Appl Microbiol. 12: 38–47.

    Article  Google Scholar 

  10. Kushner, D.J. 1978. In: Microbial Life in Extreme Environments. Kushner, D. J. (Ed.). Academic Press, London, p. 317–368.

    Google Scholar 

  11. Bartlett, D., Wright, D. and Yayanos, A.A. 1989. Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium. Nature 342: 572–574.

    Article  CAS  Google Scholar 

  12. Miller, J.E., Shah, N.N., Nelson, C.M., Ludlow, J.M. and Clark, D.S. Pressure and temperature effects on growth and gas production of the extreme thermophile Methanococcus janaschii. Appl. Environ. Microbiol. 54: 3039–3042.

  13. Trent, J.D., Osipiuk, J. and Pinkau, T. 1990. Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. Strain B12. J. Bact. 172: 1478–1484.

    Article  CAS  Google Scholar 

  14. Trent, J.D., Nimmesgern, E., Wall, J.S., Hartl, F.U. and Horwich, A. 1991 A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein T-complex polypeptide-1. Nature 354: 490–493.

    Article  CAS  Google Scholar 

  15. Holden, J.F. and Baross, J.A. 1993. Enhanced thermotolerance and temperature-induced changes in protein composition in the hyperthermophilic archaeon ES-4. J. Bacteriol. 175: 2839–2843.

    Article  CAS  Google Scholar 

  16. Adams, M.W.W. and Kelly, R.M. (Eds.) 1992. Biocatalysis at Extreme Temperatures: Enzyme Systems Near and Above 100°C, Washington, D.C, American Chemical Society, 215 pp., Series No. 498.

    Google Scholar 

  17. Reeve, J.N. 1992. Molecular biology of methanogens. Annu. Rev. Microbiol. 46: 165–191.

    Article  CAS  Google Scholar 

  18. Reeve, J.N. 1994. Thermophiles in New Zealand. ASM News. 60: 541–545.

    Google Scholar 

  19. Stetter, K.O., Fiala, G., Huber, R. and Segerer, A. 1990. Hyperthermophilic microorganisms. FEMS Microbiol. Rev. 75: 117–124.

    Article  Google Scholar 

  20. Kelly, R.M. and Adams, M.W.W. 1994. Metabolism in hyperthennophilic microorganisms. Antonie van Leeuwenhoek 66: 247–270

    Article  CAS  Google Scholar 

  21. Kelly, R.M., Brown, S.H., Blumentals, I.I. and Adams, M.W.W. 1992. Characterization of Enzymes from High Temperature Bacteria, in Biocatalysis at Extreme Temperatures, Adams, M.W.W. and Kelly, R. M. (Eds.). ACS Symposium Series No. 498, p. 23–42.

    Book  Google Scholar 

  22. Hochachka, P.W. and Somero, G.N. 1984. Biochemical Adaptations. Princeton University Press, Princeton, NJ.

    Book  Google Scholar 

  23. Craik, C.S. 1994. Natural adaptation analysis for engineering proteases. Presented at NSF Workshop on Extremozymes, Washington, DC, May, 1994.

    Google Scholar 

  24. Muriana, F.J.G., Alvarez-Ossorio, M.C. and Relimpio, A.M. 1991. Purification and characterization of aspartate aminotransferase from the halophile archaebacterium Haloferax mediterranei. Biochem. J. 278: 149–154.

    Article  CAS  Google Scholar 

  25. Ryu, K., Kim, J. and Dordick, J.S. 1994. Catalytic properties and potential of an extracellular protease from an extreme halophile. Enzyme Microbiol. Technol. 16: 266–275.

    Article  CAS  Google Scholar 

  26. Adams, M.W.W. and Kelly, R.M. 1994. Thermostability and thennoactivity of enzymes from hyperthermophilic microorganisms. Bioorg. Med. Chem. 2: 659–667.

    Article  CAS  Google Scholar 

  27. Kelly, R.M. and Brown, S.H. 1993. Enzymes from high temperature microorganisms. Curr. Opin. Biotechnol. 4: 188–192.

    Article  CAS  Google Scholar 

  28. Adams, M.W.W. 1993. Enzymes and proteins from organisms that grow near and above 100°C. Ann. Rev. Microbiol. 47: 627–658.

    Article  CAS  Google Scholar 

  29. Kelly, R.M., Adams, M.W.W. and Baross, J.A. 1994. Biotechnology and life in boiling water. Chemistry in Britain 30: 555–558.

    CAS  Google Scholar 

  30. Costantino, H.R., Brown, S.H. and Kelly, R.M. 1990. Purification and characterization of an a-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115°C. J. Bacteriol. 172: 3654–60.

    Article  CAS  Google Scholar 

  31. Kegen, S.W.M., Luesink, E.J., Stams, A.J.M. and Zehnder, A.J.B. 1993. Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur. J. Biochem. 213: 305–312.

    Article  Google Scholar 

  32. Laderman, K.A., Davis, B.R., Krutzsch, H., Krutzsch, H.C., Lewis, M.S., Griko, Y.V., Privalov, P.L. and Anfinsen, C. B. 1993. The purification and characterization of an extremely thermostable α-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J. Biol. Chem. 268: 24394–24401.

    CAS  PubMed  Google Scholar 

  33. Blumentals, I.I., Robinson, A.S. and Kelly, R.M. 1990. Characterization of SDS-resistant proteolytic activity in the hyperthermophilic archaebacterium, Pyrococcus furiosus. Appl. Environ. Microbiol. 56: 1992–1998.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Brown, S.H. and Kelly, R.M. 1993. Characterization of amylolytic enzymes, having both α-1,4 and α-1,6-hydrolytic activity, from the thermophilic archaea Pyrococcus furiosus and Thermococcus litoralis. Appl. Environ. Microbiol. 59: 2614–2621.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mukund, S. and Adams, M.W.W. 1991. The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase: evidence for its participation in a unique glycolytic pathway. J. Biol. Chem. 266: 14208–14216.

    CAS  PubMed  Google Scholar 

  36. Robb, F.T., Park, J.B. and Adams, M.W.W. 1992. Characterization of an extremely thermostable glutamate dehydrogenase: A key enzyme in the primary metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Biochem. Biophys. Acta 1120: 267–272.

    CAS  PubMed  Google Scholar 

  37. Ma, K. and Adams, M.W.W. 1994. Sulfide dehydrogenase from the hyperthermophilic archaeon, Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur. J. Bacteriol. 176: 6509–6517.

    Article  CAS  Google Scholar 

  38. Bryant, F.O. and Adams, M.W.W. 1989. Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J. Biol. Chem. 264: 5070–9.

    CAS  PubMed  Google Scholar 

  39. Badr, H.R., Sims, K.A. and Adams, M.W.W. Purification and characterization of a sucrose a-glucohydrolase from Pyrococcus furiosus exhibiting a temperature optimum above 100°C. Syst. Appl. Microbiol. 17: 1–6.

  40. Lundberg, K.S., Shoemaker, D.D., Short, J.M., Sorge, J.A., Adams, M.W.W. and Mathur, E. 1991. High fidelity amplification with a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108: 1–6.

    Article  CAS  Google Scholar 

  41. Chi, E. and Bartlett, D.H. 1993. Use of a reporter gene to follow high-pressure signal transduction in the deep-sea bacterium Photobacterium sp. Strain S9. 175: 7533–

    CAS  Google Scholar 

  42. Heremans, K. 1980. Biophysical chemistry at high pressure. Rev. Phys. Chem. Jpn. 50: 256–273.

    Google Scholar 

  43. Hei, D.J. and Clark, D.S. 1994. Pressure stabilization of proteins from extreme thermophiles. 60: 932–939.

  44. Reiter, W., Hudepohl, U. and Zillig, W. 1990. Mutational analysis of an archae-bacterial promoter: Essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc. Natl. Acad. Sci. USA 87: 9509–13.

    Article  CAS  Google Scholar 

  45. Thomm, M., Wich, G., Brown, J.W., Frey, G., Sherf, B.A. and Beckler, G.S. 1989. An archaebacterial promoter sequence assigned by RNA polymerase binding experiments. Can. J. Microbiol. 35: 30–35.

    Article  CAS  Google Scholar 

  46. Hudepohl, U., Reiter, W.D. and Zillig, W. 1990. In vitro transcription of two rRNA genes of the archaebacterium Sulfolobus sp. B12 indicates a factor requirement for specific initiation. Proc. Natl. Acad. Sci. USA 87: 5851–5855.

    Article  CAS  Google Scholar 

  47. Grayling, R.A., Sandman, K. and Reeve, J.N. 1994. Archaeal DNA binding proteins and chromosome structure. System. Appl. Microbiol. 16: 582–590.

    Article  CAS  Google Scholar 

  48. Kjems, J. and Garrett, R.A. 1988. Novel splicing mechanism for the riboso-mal RNA intron in the archaebacterium Desulfumcoccus mobilis. Cell 54: 693–703.

    Article  CAS  Google Scholar 

  49. Daniels, C.J., Gupta, R. and Doolittle, W.F. 1985. Transcription and excision of a large intron in the tRNA Trp gene of an archaebacterium, Halobacterium volcanii. J. Biol. Chem. 260: 3132–34.

    CAS  PubMed  Google Scholar 

  50. Marguet, E. and Forterre, P. 1994. DNA stability at temperatures typical for hyperthermophiles. Nucleic Acids. Res. 22: 1681–86.

    Article  CAS  Google Scholar 

  51. Scholz, S., Sonnenbichler, J., Schäfer, W. and Hensel, R. 1992. Di-myo-inositol-1,1′-phosphate: a new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett. 306: 239–42.

    Article  CAS  Google Scholar 

  52. Xu, M., Southworth, M.W., Mersha, F.B., Hornstra, L.J. and Perler, F.B. 1993. In vitro protein splicing of purified precursor and the identification of a branched intermediate. Cell 75: 1371–1377.

    Article  CAS  Google Scholar 

  53. Barnes, W.M. 1994. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc. Natl. Acad. Sci. USA 91: 2216–2220.

    Article  CAS  Google Scholar 

  54. Cheng, S., Focker, C., Barnes, W.M. and Higuchi, R. 1994. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. USA 91: 5695–9.

    Article  CAS  Google Scholar 

  55. Holmes, M.L. and Dyall-Smith, M.L. 1990. A plasmid vector with a selectable marker for halophilic archaebacteria. J. Bacteriol. 172: 756–61.

    Article  CAS  Google Scholar 

  56. Schleper, C., Kubo, K. and Zillig, W. 1992. The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: Demonstration of infectivity and of transfection with viral DNA. Proc. Natl. Acad. Sci. USA 89: 7645–7649.

    Article  CAS  Google Scholar 

  57. Mather, M.W. and Fee, J.A. 1992. Development of plasmid cloning vectors for Thermus thermophilus HB8: expression of a heterologous, plasmid-borne kanamycin nucleotidyltransferase gene. Appl Environ Microbiol. 58: 421–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Perler, F.B., Comb, D.G., Jack, W.E., Moran, L.S., Qiang, B., Kucera, R.B., Benner, J., Slatko, B.E., Nwankwo, D.O., Hempstead, S.K. and et al. 1992. Intervening sequences in an Archaea DNA polymerase gene. Proc. Natl. Acad. Sci. USA 89: 5577–81.

    Article  CAS  Google Scholar 

  59. Heltzel, A., Smith, E.T., Zhou, Z.H., Blarney, J.M. and Adams, M.W.W. 1994. Cloning, characterization and expression of the gene for the [4Fe-4S] ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 176: 4790–4793.

    Article  CAS  Google Scholar 

  60. Mroczkowski, B.S., Huvar, A., Lernhardt, W., Misono, K., Nielson, K. and Scott, B. 1994. Secretion of thermostable DNA polymerase using a novel Baculovirus vector. J. Biol. Chem. 269: 13522–13528.

    CAS  PubMed  Google Scholar 

  61. DiRuggiero, J. and Robb, F.T. 1995. Expression and in vitro assembly of recombinant glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Appl. Environ. Microbiol. 61: 159–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sandman, K., Perler, F.B. and Reeve, J.N. 1994. Histone-encoding genes from Pyrococcus: Evidence for members of the HMf family of archaeal histones in a non-methanogenic Archaeon. Gene 150: 207–208.

    Article  CAS  Google Scholar 

  63. Pedroni, P., Dellavolpe, A., Galli, G., Mura, G.M., Pratesi, C. and Grandi, G. 1995. Characterization of the locus encoding the [Ni-Fe] sulfhydrogenase from the archaeon Pyrococcus furiosus: Evidence for a relationship to bacterial sulfite reductases. Microbiology 141: 449–458.

    Article  CAS  Google Scholar 

  64. Robinson, K.A., Bartley, D.A., Robb, F.T. and Schreier, H.J. 1995. A gene from the hyperthermophile Pyrococcus furiosus whose deduced product is homologous to members of the prolyl oligopeptidase family of proteases. Gene 152: 103–106.

    Article  CAS  Google Scholar 

  65. Robinson, K.A. and Schreier, H.J. 1995 Isolation, sequence and characterization of the maltose-regulated mlrA gene from the hyperthermophilic archaeum Pyrococcus furiosus. Gene 151: 173–176.

    Article  Google Scholar 

  66. Zwickl, P., Fabry, S., Bogedain, C., Haas, A. and Hensel, R. 1990. Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei: characterization of the enzyme, cloning and sequencing the gene, and expression in Escherichia coli. J. Bacteriol. 172: 4329–38.

    Article  CAS  Google Scholar 

  67. Tiboni, O., Cammarano, P. and Sanangelantoni, A.M. 1993. Cloning and sequencing of the gene encoding glutamine synthetase I from the archaeum Pyrococcus woeseii: anomalous phytogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences. J. Bacteriol. 175: 2961–2969.

    Article  CAS  Google Scholar 

  68. DiRuggiero, J., Robb, F.T., Jagus, R., Klump, H.K., Borges, K.M., Mai, X., Kessel, M. and Adams, M.W.W. 1993. Characterization, cloning, and in vitro expression of an extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaeon ES4. J. Biol. Chem. 268: 17767–17774.

    CAS  PubMed  Google Scholar 

  69. Busse, S.A., La Mar, G.N., Yu, L.P., Howard, J.B., Smith, E.T., Zhou, Z.H. and Adams, M.W.W. 1992. Proton NMR investigation of the oxidized three-iron clusters in the ferredoxins from the hyperthermophilic archaea, Pyrococcus furiosus and Thermococcus litoralis. Biochemistry 31: 11952–11962.

    Article  CAS  Google Scholar 

  70. Jaenicke, R. 1991. Protein stability and molecular adaption to extreme conditions. Eur. J. Biochem. 202: 715–28.

    Article  CAS  Google Scholar 

  71. Böhm, G. and Jaenicke, R. 1994. Relevance of sequence statistics for the properties of extremophilic proteins. Int. J. Pept. Prot. Res. 43: 97–106.

    Article  Google Scholar 

  72. Blake, P.R., Park, J.B., Bryant, F.O., Aono, S., Magnuson, J.K., Eccleston, E., Howard, J.B., Summers, M.F. and Adams, M.W.W. 1991. Determinants of protein hyperthermostability. 1. Purification, amino acid sequence, and secondary structure from NMR of the rubredoxin from the hyperthermophili-carchaebacterium, Pyrococcus furiosus. Biochemistry 30: 10885–10891.

    Article  CAS  Google Scholar 

  73. Day, M.W., Hsu, B.T., Joshua-Tor, L., Park, J.-B., Zhou, Z.H., Adams, M.W.W. and Rees, D. C. 1992. X-ray crystal structure of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium, Pyrococcus furiosus. Protein Science 1: 1494–1507.

    Article  CAS  Google Scholar 

  74. Blake, P.R., Park, J.-B., Zhou, Z.H., Hare, D.R., Adams, M.W.W. and Summers, M.F. 1992. Solution state structure by NMR of zinc-substituted rubredoxin from the marine hyperthermophilic archaebacterium, Pyrococcus furiosus. Protein Science 1: 1508–1521.

    Article  CAS  Google Scholar 

  75. Chan, M.K., Mukund, S., Kletzin, A., Adams, M.W.W. and Rees, D.C. 1995. Structure of the hyperthermophilic tungstoprotein enzyme aldehyde ferredoxin oxidoreductase. Science 267: 1463–1469.

    Article  CAS  Google Scholar 

  76. Korndörfer, I., Steipe, B., Huber, R., Tomschy, A. and Jaenicke, R. 1995. The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 angstrom resolution. J. Mol. Biol. 246: 511–521.

    Article  Google Scholar 

  77. Ragone, R. and Colonna, G. 1995. Do globular proteins require some structural peculiarity to best function at high temperatures? J. Am. Chem. Soc. 117: 16–20.

    Article  CAS  Google Scholar 

  78. Wick, C.B. 1994. Enzymology advances offer economical and environmentally safe ways to make paper. GEN 14: 1

    Google Scholar 

  79. McCutchen, C.M., Duffaud, G.D., Leduc, P., Petersen, A., Tayal, A., Khan, S.A. and Kelly, R.M. 1995. Purification, biochemical characterization and use of β-1,4-mannanase and α-1,6-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitona 5068 for hydrolysis of galactomannans in hydraulic fracturing fluids. Biotechnol. Bioeng. Submitted.

  80. Klibanov, A.M. 1986. Enzymes that work in organic solvents. Chemtech 16: 354–359.

    CAS  Google Scholar 

  81. Russell, A.J., Beckman, E.J. and Chaudhary, A. Studying enzyme activity in supercritical fluids. Chemtech 24: 33–38.

  82. Margolin, A.L. 1991. Enzymes: Use them. Chemtech 21: 160–167.

    CAS  Google Scholar 

  83. Dordick, J.S. 1989. Enzymic catalysis in monophasic organic solvents. Enzyme Microb. Technol. 11: 194–211.

    Article  CAS  Google Scholar 

  84. Arnold, F.H. 1993. Protein engineering for unusual environments. Tibtech 4: 450–455.

    CAS  Google Scholar 

  85. Mozhaev, V.V., Heremans, K., Frank, J., Masson, P. and Balny, C. 1994. Exploiting the effects of high hydrostatic pressure in biotechnological applications. Tibtech 12: 493–501.

    Article  CAS  Google Scholar 

  86. Kunugi, S. 1993. Modification of biopolymer function by high pressure. Prog. Polym. Sci. 18: 805–838.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, M., Perler, F. & Kelly, R. Extremozymes: Expanding the Limits of Biocatalysis. Nat Biotechnol 13, 662–668 (1995). https://doi.org/10.1038/nbt0795-662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0795-662

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing