Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Semliki Forest Virus Expression System: Production of Conditionally Infectious Recombinant Particles

Abstract

In the recently developed Semliki Forest virus (SFV) DNA expression system, recombinant RNA encoding the viral replicase, and helper RNA molecules encoding the structural proteins needed for virus assembly are cotransfected into cells. Since the helper RNA lacks the sequence needed for its packaging into nucleocapsids, only recombinant RNAs should be packaged. We have found, however, that small amounts of replication-proficient SFV particles can still be produced. Here we describe the construction of a helper variant with a mutation in the gene encoding the viral spike protein such that its product cannot undergo normal proteolytic processing to activate viral entry functions. Hence, the recombinant stock is noninfectious, but may be activated by cleavage with chymotrypsin. When recombinant virus produced with the new helper was examined in a variety of assays, including sensitive animal tests, we were unable to detect any replication-competent SFV particles. We therefore conclude that this conditional expression system meets extremely stringent biosafety requirements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Liljeström, P. 1993. Virally based transient expression systems. Curr. Op. Ther. Pat. 3: 1–27.

    Google Scholar 

  2. Bredenbeek, P.J. and Rice, C.M. 1992. Animal RNA virus expression systems. Sem. Virol. 3: 297–310.

    CAS  Google Scholar 

  3. Rice, C.M. 1992. Examples of expression systems based on animal RNA viruses: alphaviruses and influenza virus. Curr. Op. Biotechnol. 3: 522–532.

    Article  Google Scholar 

  4. Schlesinger, S. 1993. Alphaviruses—vectors for the expression of heterologous genes. Trends Biotechnol. 11: 18–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liljeström, P., Lusa, S., Huylebroeck, D. and Garoff, H. 1991. In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the 6,000-molecular-weight membrane protein modulates virus release. J. Virol. 65: 4107–4113.

    PubMed  PubMed Central  Google Scholar 

  6. Liljeström, P. and Garoff, H. 1991. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Bio/Technology 9: 1356–1361.

    Article  Google Scholar 

  7. Geigenmüller-Gnirke, U., Weiss, B., Wright, R. and Schlesinger, S. 1991. Complementation between Sindbis viral RNAs produces infectious particles with a bipartite genome. Proc. Nat. Acad. Sci. USA 88: 3253–3257.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Weiss, B.G. and Schlesinger, S. 1991. Recombination between Sindbis virus RNAs. J. Virol. 65: 4017–4025.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Melançon, P. and Garoff, H. 1986. Reinitiation of translocation in the Semliki Forest virus structural polyprotein: Identification of the signal for the E1 glycoprotein. EMBO J. 5: 1551–1560.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Melançon, P. and Garoff, H. 1987. Processing of the Semliki Forest virus structural polyprotein: Role of the capsid protease. J. Virol. 61: 1301–1309.

    PubMed  PubMed Central  Google Scholar 

  11. Garoff, H., Huylebroeck, D., Robinson, A., Tillman, U. and Liljeström, P. 1990. The signal sequence of the p62 protein of Semliki Forest virus is involved in initiation but not in completing chain translocation. J. Cell Biol. 111: 867–876.

    Article  CAS  PubMed  Google Scholar 

  12. Liljeström, P. and Garoff, H. 1991. Internally located cleavable signal sequences direct the formation of Semliki Forest virus membrane proteins from a polyprotein precursor. J. Virol. 65: 147–154.

    PubMed  PubMed Central  Google Scholar 

  13. Wahlberg, J.M., Boere, W.A. and Garoff, H. 1989. The heterodimeric association between the membrane proteins of Semliki Forest virus changes its sensitivity to mildly acidic pH during virus maturation. J. Virol. 63: 4991–4997.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lobigs, M., Zhao, H. and Garoff, H. 1990. Function of Semliki Forest virus E3 peptide in virus assembly: Replacement of E3 with an artificial signal peptide abolishes spike heterodimerization and surface expression of E1. J. Virol. 64: 4346–4355.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. de Curtis, I. and Simons, K. 1988. Dissection of Semliki Forest virus glycoprotein delivery from the trans-Golgi network to the cell surface in permeabilized BHK cells. Proc. Natl. Acad. Sci. USA 85: 8052–8056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barr, P.J. 1991. Mammalian subtilisins: The long-sought dibasic processing endoproteases. Cell 66: 1–3.

    Article  CAS  PubMed  Google Scholar 

  17. Smeekens, S.P. 1993. Processing of protein precursors by a novel family of subtilisin-related mammalian endoproteases. Bio/Technology 11: 182–186.

    CAS  Google Scholar 

  18. Lobigs, M. and Garoff, H. 1990. Fusion function of the Semliki Forest virus spike is activated by proteolytic cleavage of the envelope glycoprotein p62. J. Virol. 64: 1233–1240.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lobigs, M., Wahlberg, J.M. and Garoff, H. 1990. Spike protein oligomerization control of Semliki Forest virus fusion. J. Virol. 64: 5214–5218.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Salminen, A., Wahlberg, J.M., Lobigs, M., Liljeström, P. and Garoff, H. 1992. Membrane fusion process of Semliki Forest virus II: Cleavage dependent reorganization of the spike protein complex controls virus entry. J. Cell Biol. 116: 349–357.

    Article  CAS  PubMed  Google Scholar 

  21. Wahlberg, J. and Garoff, H. 1992. Membrane fusion process of Semliki Forest virus I: Low pH-induced rearrangement in spike protein quaternary structure proceeds virus penetration into cells. J. Cell Biol. 116: 339–357.

    Article  CAS  PubMed  Google Scholar 

  22. Wahlberg, J.M., Bron, R., Wilschut, J. and Garoff, H. 1992. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J. Virol. 66: 7309–7318.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bron, R., Wahlberg, J.M., Garoff, H. and Wilschut, J. 1993. Membrane fusion of Semliki Forest virus in a model system: correlation between fusion kinetics and structural changes in the envelope glycoprotein. EMBO J. 12: 693–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Strauss, J.H. and Strauss, E.G. 1988. Evolution of RNA viruses. Ann. Rev. Microbiol. 42: 657–683.

    Article  CAS  Google Scholar 

  25. Griffin, D.E. 1986. Alphavirus pathogenesis and immunity, p. 209–250. In: The Togaviridae and Flaviviridae, S. S. Schlesinger and M. J. Schlesinger (Eds.). Plenum Press, New York.

    Chapter  Google Scholar 

  26. Mathiot, C.C., Grimaud, G., Garry, P., Bouquety, J.C., Mada, A., Daguisy, A.M. and Georges, A.J. 1990. An outbreak of human Semliki Forest virus infections in Central African Republic. Am. J. Trop. Med. Hyg. 42: 386–393.

    Article  CAS  PubMed  Google Scholar 

  27. Bradish, C.J., Allner, K. and Maber, H.B. 1971. The virulence of original and derived starins of Semliki Forest virus for mice, guineapigs and rabbits. J. Gen. Virol. 12: 141–160.

    Article  CAS  PubMed  Google Scholar 

  28. Glasgow, G.M., Sheahan, B.J., Atkins, G.J., Wahlberg, J.M., Salminen, A. and Liljeström, P. 1991. Two mutations in the envelope glycoprotein E2 of Semliki Forest virus affecting the maturation and entry patterns of the virus alter pathogenicity for mice. Virology 185: 741–748.

    Article  CAS  PubMed  Google Scholar 

  29. Morein, B., Helenius, A., Simons, K., Pettersson, R., Kääriäinen, L. and Schirrmacher, V. 1978. Effective subunit vaccines against an enveloped animal virus. Nature 276: 715–718.

    Article  CAS  PubMed  Google Scholar 

  30. Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  31. Kunkel, T.A., Roberts, J.D. and Zakour, R.A. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Meth. Enzymol. 154: 367–382.

    Article  CAS  Google Scholar 

  32. Su, T.-Z. and El-Gewely, M.R. 1988. A multisite-directed mutagenesis using T7 DNA polymerase: application for reconstructing a mammalian gene. Gene 69: 81–89.

    Article  CAS  PubMed  Google Scholar 

  33. Liljeström, P. and Garoff, H. 1993. Expression of proteins using Semliki Forest virus vectors, p. 16.xx.1–16.xx.00. In: Current Protocols in Molecular Biology, F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. A. Smith, J. G. Seidman and K. Struhl (Eds.). Greene Publishing Associates and Wiley Interscience, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berglund, P., Sjöberg, M., Garoff, H. et al. Semliki Forest Virus Expression System: Production of Conditionally Infectious Recombinant Particles. Nat Biotechnol 11, 916–920 (1993). https://doi.org/10.1038/nbt0893-916

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0893-916

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing