Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Conversion to Mucoidy in Pseudomonas aeruginosa

Abstract

Chronic respiratory complications in cystic fibrosis, compounded by recurring infections with mucoid Pseudomonas aeruginosa and the associated inflammation, are the primary cause of high mortality in this inheritable disease. Since the conversion of P. aeruginosa into the exopolysaccharide alginate overproducing strains plays a critical role in the establishment of chronic infection, studies are directed towards understanding the processes underlying this phenomenon. The genes (algU, mucA, and mucB) and genetic alterations responsible for conversion to mucoidy have been recently characterized. The mutations leading to the emergence of mucoid strains are superimposed on a regulatory system with elements that resemble those controlling other aspects of bacterial developmental physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boat, T.F., Welsh, M.J. and Beaudet, A.L. 1989. Cystic Fibrosis, p.2649–2680. In: The Metabolic Basis of Inherited Disease. McGraw-Hill, New York.

    Google Scholar 

  2. Collins, F.S. 1992. Cystic flbrosis: molecular biology and therapeutic implications. Science 256: 774–779.

    Article  CAS  Google Scholar 

  3. Govan, J.R.W. 1988. Alginate biosynthesis and other unusual characteristics associated with the pathogenesis of Pseudomonas aeruginosa in cystic fibrosis, p.67–96. In: Bacterial Infections of Respiratory and Gastrointestinal Mucosae. Griffiths, E., Donachie, W., and Stephen, J. (Eds.). IRL Press, Oxford.

    Google Scholar 

  4. Gilligan, P.H. 1991. Microbiology of airway disease in patients with cystic fibrosis. Clin. Microbiol. Rev. 4: 35–51.

    Article  CAS  Google Scholar 

  5. Govan, J.R.W. and Nelson, J.W. 1992. Microbiology of lung infection in cystic fibrosis. Br. Med. Bull. 48: 912–930.

    Article  CAS  Google Scholar 

  6. Kerem, B., Rommens, J.M., Buchanan, J.A., Markiewicz, D., Cox, T.K., Chakravarti, A., Buchwald, M. and Tsui, L. 1989. Identification of the cystic fibrosis gene: Genetic analysis. Science 245: 1073–1080.

    Article  CAS  Google Scholar 

  7. Quinton, P.M. 1983. Chloride impermeability in cystic fibrosis. Nature 301: 421–422.

    Article  CAS  Google Scholar 

  8. Knowles, M.R., Stutts, M.J., Spock, A., Fischer, N., Gatzy, J.T. and Boucher, R.C. 1983. Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221: 1067–1070.

    Article  CAS  Google Scholar 

  9. Gacesa, P. and Russel, N.J. 1990. The structure and properties of alginate, p.29–49. In: Pseudomonas Infections and Alginates: Biochemistry, Genetics, and Pathology. Gacesa, P. and Russell, N. J. (Eds.). Chapman and Hall, London.

    Chapter  Google Scholar 

  10. Lam, J., Chan, R., Lam, K. and Costerton, J.W. 1980. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect. Immun. 28: 546–556.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Whittier, S., Hopfer, R.L., Knowles, M.R. and Gilligan, P.H. 1993. Improved recovery of mycobacteria from respiratory secretions of patients with cystic fibrosis. J. Clin. Microbiol. 31: 861–863.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Isles, A., Maclusky, I., Corey, M., Gold, R., Prober, C., Fleming, P. and Levison, H. 1985. Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J. Pediatr. 104: 206–210.

    Article  Google Scholar 

  13. Dogget, R.G., Harrison, G.M., Stillwell, R.N. and Wallis, E.S. 1966. An a typical Pseudomonas aeruginosa associated with cystic fibrosis of the pancreas. J. Pediatr. 68: 215–221.

    Article  Google Scholar 

  14. Pier, G.B., Grout, M. and Desjardins, D. 1991. Complement deposition by antibodies to Pseudomonas aeruginosa mucoid exopolysaccharide (MEP) and by non-MEP specific opsonins. J. Immunol. 147: 1869–1876.

    CAS  PubMed  Google Scholar 

  15. Pier, G.B., Saunders, J.M., Ames, P., Edwards, M.S., Auerbach, H., Goldfarb, J., Speert, D.P. and Hurwitch, S. 1987. Opsonophagocytic killing-antibody to P. aeruginosa mucoid exopolysaccharide in older, non-colonized cystic fibrosis patient. N. Engl. J. Med. 317: 793–798.

    Article  CAS  Google Scholar 

  16. Pier, G.B., Small, G.J. and Warren, H.B. 1990. Protection against mucoid Pseudomonas aeruginosa in rodent models of endobronchial infections. Science 249: 537–540.

    Article  CAS  Google Scholar 

  17. Tosi, M.F., Zakem, H. and Berger, M. 1990. Neutrophil elastase cleaves C3bi on opsonized Pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J. Clin. Invest. 86: 300–308.

    Article  CAS  Google Scholar 

  18. Bayer, A.S., Park, S., Ramos, M.C., Nast, C.C., Eftekhar, F. and Schiller, N.L. 1992. Etfects of alginase on the natural history and antibiotic therapy of experimental endocarditis caused by mucoid Pseudomonas aeruginosa. Infect. Immun. 60: 3979–3985.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mai, G.T., Seow, W.K., Pier, G.B., McCormack, J.G. and Thong, Y.H. 1993. Suppression of lymphocyte and neutrophil functions by Pseudomonas aeruginosa mucoid exopolysaccharide (alginate): reversal by physiochem-ical, alginase, and specific monoclonal antibody treatments. Infect. Immun. 61: 559–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramphal, R. and Pier, G.B. 1985. Role of Pseudomonas aeruginosa mucoid exopolysaccharide in adherence to tracheal epithelial cells. Infect. Immun. 47: 1–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jensen, E.T., Kharazmi, A., Lam, K., Costerton, J.W. and Hoiby, N. 1990. Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect. Immun. 58: 2383–2385.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Anwar, H., Strap, J.L. and Costerton, J.W. 1992. Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob. Agents Chemother. 36: 1347–1351.

    Article  CAS  Google Scholar 

  23. Costerton, J.W., Cheng, K.-J., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M. and Marrie, T.J. 1987. Bacterial biofilms in nature and disease. Ann. Rev. Micriobiol. 41: 435–464.

    Article  CAS  Google Scholar 

  24. Fyfe, J.A.M. and Govan, J.R.W. 1980. Alginate synthesis in mucoid Pseudomonas aeruginosa: a chromosomal locus involved in control. J. Gen. Microbiol. 119: 443–450.

    CAS  Google Scholar 

  25. MacGeorge, J., Korolik, V., Morgan, A.F., Asche, V. and Holloway, B.W. 1986. Transfer of a chromosomal locus responsible for mucoid colony morphology in Pseudomonas aeruginosa isolated from cystic fibrosis patients to P. aeruginosa PAO. J. Med. Microbiol. 21: 331–336.

    Article  CAS  Google Scholar 

  26. May, T.B., Shinabarger, D., Maharaj, R., Kato, J., Chu, L., DeVault, J.D., Roychoudhury, S., Zielinski, N., Berry, A., Rothmel, R.K., Misra, T.K. and Chakrabarty, A.M. 1991. Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin. Microbiol. Rev. 4: 191–206.

    Article  CAS  Google Scholar 

  27. Deretic, V., Mohr, C.D. and Martin, D.W. 1991. Mucoid Pseudomonas aeruginosa in cystic fibrosis: signal transduction and histone-like elements in the regulation of bacterial virulence. Mol. Microbiol. 5: 1557–1583.

    Article  Google Scholar 

  28. Barry, C.E. III, Hayes, S.F., and Hackstadt, T. 1992. Nucleoid condensation in Escherichia coli that expresses a chlamydial histone homolog. Science 256: 377–379.

    Article  CAS  Google Scholar 

  29. Wozniak, D.J. and Ohman, D.E. 1991. Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription. J. Bacteriol. 173: 1406–1413.

    Article  CAS  Google Scholar 

  30. Martin, D.W., Holloway, B.W. and Deretic, V. 1993. Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor. J. Bacteriol. 175: 1153–1164.

    Article  CAS  Google Scholar 

  31. Martin, D.W., Schurr, M.J., Mudd, M.H. and Deretic, V. 1993. Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol. Microbiol. 9: 495–506.

    Google Scholar 

  32. Martin, D.W., Schurr, M.J., Mudd, M.H., Govan, J.R.W., Holloway, B.W. and Deretic, V. 1993. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl. Acad. Sci. USA. 90: 8377–8381.

    Article  CAS  Google Scholar 

  33. Ohman, D.E., Goldberg, J.B. and Flynn, J.L. 1990. Molecular analysis of the genetic switch activating alginate production, p.28–35. In: Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology. S. Silver et al. (Eds.) American Society for Microbiology, Washington, D.C.

    Google Scholar 

  34. Flynn, J.L. and Ohman, D.E. 1988. Cloning of genes from mucoid Pseudomonas aeruginosa which control spontanus conversion to the alginate producing phenotype. J. Bacteriol. 170: 1352–1460.

    Google Scholar 

  35. Deretic, V., Govan, J.R.W., Konyecsni, W.M. and Martin, D.W. 1990. Mucoid Pseudomonas aeruginosa in cystic fibrosis: mutations in the muc loci affect transcription of the algR and algD genes in response to environmental stimuli. Mol. Microbiol. 4: 189–196.

    Article  CAS  Google Scholar 

  36. Ratnaningsih, E.S., Dharmsthiti, S., Krishnapillai, V., Morgan, A., Sinclair, M. and Holloway, B.W. 1990. A combined physical and genetic map of Pseudomonas aeruginosa PAO. J. Gen. Microbiol. 136: 2351–2357.

    Article  CAS  Google Scholar 

  37. Fyfe, J.A.M. and Govan, J.R.W. 1983. Synthesis, regulation, and biological function of bacterial alginate, p. 45–83. In: Progress in Industrial Microbiology, Vol. 18. Bushnell, M. E. (Ed.). Elsevier, Amsterdam.

    Google Scholar 

  38. Dubnau, E., Weir, J., Nair, G., Carter, L. III, Moran, C. Jr and Smith, I. 1988. Bacillus sporulation gene spo0H codes for σ30 (σH). J. Bacteriol. 170: 1054–1062.

    Article  CAS  Google Scholar 

  39. Chitnis, C.E. and Ohman, D.E. 1993. Genetic analysis of the alginate biosyn-thetic gene cluster of Pseudomonas aeruginosa shows evidence for an operonic structure. Mol. Microbiol. 8: 563–590.

    Article  Google Scholar 

  40. Goldberg, J.B., Gorman, W.L., Flynn, J.L. and Ohman, D.E. 1993. A mutation in algN permits trans activation of alginate production by algT in Pseudomonas species. J. Bacteriol. 175: 1303–1308.

    Article  CAS  Google Scholar 

  41. Benson, A.K. and Haldenwang, W.G. 1993. Bacillus subtilis sigma B is regulated by a binding protein (RsbW) trat blocks its association with core RNA polymerase. Proc. Natl. Acad. Sci. USA 90: 2330–2334.

    Article  CAS  Google Scholar 

  42. Duncan, L. and Losick, R. 1993. SpoIIAB is an anti-σ factor that binds to and inhibits transcription by regulatory protein σF from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 90: 2325–2329.

    Article  CAS  Google Scholar 

  43. Ohnishi, K., Kutsukake, K., Suzuki, H. and Ino, T. 1992. A novel transcrip-tional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an anti-sigma factor inhibits the activity of the flagellum-specific sigma factor, σF. Mol. Microbiol. 6: 3149–3157.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deretic, V., Martin, D., Schurr, M. et al. Conversion to Mucoidy in Pseudomonas aeruginosa. Nat Biotechnol 11, 1133–1136 (1993). https://doi.org/10.1038/nbt1093-1133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1093-1133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing