Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Production of Recombinant Salmon Calcitonin by In Vitro Amidation of an Escherichia coli Produced Precursor Peptide

Abstract

Salmon calcitonin (sCT) is a 32 amino acid peptide hormone that requires C-terminal amidation for full biological activity. We have produced salmon calcitonin by in vitro amidation of an E. coli produced precursor peptide. Glycine-extended sCT, the substrate for amidation, was produced in recombinant E. coli as part of a fusion with glutathione-S-transferase. The microbially produced soluble fusion protein was purified to near homogeneity by affinity chromatography. Following S-sulfonation of the fusion protein, the glycine-extended peptide was cleaved from the fusion by cyanogen bromide. The S-sulfonated peptide was recovered and enzymatically converted to the amidated peptide in a reaction with recombinant peptidylglycine α-amidating enzyme (α-AE) secreted from Chinese hamster ovary (CHO) cells. After reformation of the intramolecular disulfide bond, the sCT was purified with a step yield of 60%. The ease and speed of this recombinant process, as well as its potential for scale-up, make it adaptable to production demands for calcitonin, a proven useful agent for the treatment of post-menopausal osteoporosis. Moreover, the relaxed specificity of the recombinant α-AE for the penultimate amino acid which is amidated allows the basic process to be applied to the production of other amidated peptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wallis, M., Howell, S.L. and Taylor, K.W. 1985. Parathyroid hormone andcalcitonin, Chapter 13. In: The Biochemistry of the Polypeptide Hormones. John Wiley and Sons, N.Y.

    Google Scholar 

  2. Wolfe, H.J. 1982. Calcitonin: Perspectives in current concepts. J. Endo. Inv. 5: 423–432.

    CAS  Google Scholar 

  3. Welch, S.P., Cooper, C.W. and Dewey, W.L. 1986. Antinociceptive activity ofsalmon calcitonin injected intraventricularly in mice: Modulation of morphineantinociception. J. Pharm. Exp. Ther. 237(1) 54–58.

    CAS  Google Scholar 

  4. Agrawal, R., Wallach, S., Cohn, S., Tessier, M., Verch, R., Hussain, M. and Zanzi, I. 1981. Calcitonin treatment of osteoporosis, p. 227–246. In: Calcitonin 1980. A. Pecile (Ed.). Excerpta Medica, Amsterdam.

    Google Scholar 

  5. Haas, H.G., Liebrich, B.M. and Schaffner, W. 1990. Calcitonin and osteoporosis—A critical review of the literature 1980–1989. Klin Wochenschr. 68: 359–371.

    Article  CAS  Google Scholar 

  6. McDermott, M. and Kidd, G.S. 1982. The role of calcitonin in the developmentand treatment of osteoporosis. Endocrine Reviews 8 (4): 377–390.

    Article  Google Scholar 

  7. Overgaard, K., Riis, B.J., Christiansen, C., Podenphant, J. and Johansen, J.S. 1989. Nasal calcitonin for treatment of established osteoporosis. Clin. Endo. 30: 435–442.

    Article  CAS  Google Scholar 

  8. Overgaard, K., Agnusdei, D., Hansen, M.A., Maioli, E., Christiansen, C. and Gennari, C. 1991. Dose response bioactivity and bioavailability of salmoncalcitonin in premenopausal and postmenopausal women. J. Clin. Endo. Met. 72(2): 344–349.

    Article  CAS  Google Scholar 

  9. Reginster, J.Y., Deroisy, R., Lecart, M.P., Sarlet, N., Fontaine, M.A., Albert, A. and Franchimont, P. 1990. Calcitonin and postmenopausal bone loss. Exp. Geront. 25(3,4): 349–356.

    Article  CAS  Google Scholar 

  10. Reginster, J.Y., Gennari, C., Mautalen, C., Deroisy Denis, D., Lecart, M.P., Vandalem, J.L., Collette, J. and Franchimont, P. 1990b. Influence of specificanti-salmon calcitonin antibodies on biological effectiveness of nasal salmoncalcitonin in Paget's disease of the bone. Scand. J. Rheum. 19 83–86.

    Article  CAS  Google Scholar 

  11. Rittinghaus, E.F., Hesch, R.D., Harms, H.M., Busch, U., Prokop, M. and Delling, G. 1990. The concept and treatment of osteoporosis. Exp. Geront. 25(3,4): 357–365.

    Article  CAS  Google Scholar 

  12. Vega, E., Gonzalez, D., Ghiringhelli, G. and Mautalen, C. 1989. Acute effect ofthe intranasal administration of salmon calcitonin in osteoporotic women. Bone and Mineral. 9: 267–273.

    Article  Google Scholar 

  13. Norman, A. and Litwack, G. 1987. Calcium regulating hormones, p. 355–396. In: Hormones. Academic Press, N.Y.

    Chapter  Google Scholar 

  14. Epand, D.M., Epand, R.F., Stafford, A.R. and Orlowski, R.C. 1988. Deletion sequences of salmon calcitonin that retain the essential biological and conformational features of the intact molecule. J. Med. Chem. 31: 1595–1598.

    Article  CAS  Google Scholar 

  15. Orlowski, R.C., Epand, R. and Stafford, A.R. 1987. Biologically potent analogues of salmon calcitonin which do not contain an N-terminal disulfide-bridgering structure. Eur. J. Biochem. 162: 399–402.

    Article  CAS  Google Scholar 

  16. Smith, D.B. and Johnson, K.S. 1988. Single step purification of polypeptides expressed in Escherichia coli as fusions with glutathione-S-transferase. Gene. 67: 31–40.

    Article  CAS  Google Scholar 

  17. Lundblad, R.L. 1984. Chemical cleavage of peptide Bonds, p. 49–57. In: Chemical Reagents for Protein Modification, Vol I. CRC Press, Boca Raton, FL.

    Google Scholar 

  18. Gilligan, J.P., Warren, T.G., Koehn, J.A., Young, S.D., Bertelsen, A.H. and Jones, B.N. 1987. Purification of a fusion protein containing recombinant humancalcitonin. BioChromatography 2(1): 20–27.

    CAS  Google Scholar 

  19. Tamburini, P.P., Jones, B.N., Consalvo, A.P., Young, S.D., Lovato, S.J., Gilligan, J.P., Wennogle, L.P., Erion, M. and Yeng, A.Y. 1988. Structure-activityrelationships for glycine-extended peptides and the α-amidating enzyme derived from medullary thyroid CA-77 cells. Arch. Biochem. Biophys. 267(2): 623–631.

    Article  CAS  Google Scholar 

  20. Tamburini, P.P., Young, S.D., Jones, B.N., Palmesino, R.A. and Consalvo, A.P. 1990. Peptide substrate specificity of the α-amidating enzyme isolated from ratmedullary thyroid CA-77 cells. Int. J. Peptide and Protein Res. 35: 153–156.

    Article  CAS  Google Scholar 

  21. Bradbury, A.F., Finnic, M.D.A. and Smyth, D.G. 1982. Mechanism of C-terminal amide formation by pituitary enzymes. Nature 298: 686–688.

    Article  CAS  Google Scholar 

  22. Gearing, D.P., Nicola, N.A., Metcalf, D., Foote, S., Wilson, T.A., Gough, N.M. and Williams, R.L. 1989. Production leukemia inhibitory factor inEscherichia coli by a novel procedure and its use in maintaining embryonic stem cells in culture. Bio/Technology 7: 1157–1161.

    CAS  Google Scholar 

  23. Chan, W.W.C. 1968. A method for complete S-sulfonation of cysteine residues inproteins. Biochemistry 8 (12): 4247–4254.

    Article  Google Scholar 

  24. Han, K.K., Richard, C. and Biserte, G. 1983. Current developments in chemical cleavage of proteins, minireview. Int. J. Biochem. 15 (7): 875–884.

    Article  CAS  Google Scholar 

  25. Miller, D.A., Sayad, K.U., Kulathila, R., Beaudry, G.A., Merkler, D.J., Merkler, D.J. and Bertelsen, A.H. 1992. Production and characterization of recombinant bifunctional peptidylglycine α-amidating enzyme expressed in Chinese hamster ovary Cells. Arch. Biochem. Biophys. 298: 380–388.

    Article  CAS  Google Scholar 

  26. Urlaub, G., Mitchell, P.J., Kas, E., Chasin, L.A., Funanage, V.L., Myoda, T.T. and Hamlin, J. 1986. Effect of gamma rays at the dihydrolate reductase locus: Deletions and inversions. Somat. Cell. Mol. Genet. 12 (6): 555–566.

    Article  CAS  Google Scholar 

  27. Sturmer, A., Driscoll, D.P. and Jackson-Matthews, D.E. 1991 A quantitative immunoassay using chicken antibodies for detection of native or recombinant α-amidating enzyme. J. Imm. Methods. 146 (1): 105–110.

    Article  Google Scholar 

  28. Gilligan, J.P., Lovato, S.J., Mehta, N.M., Bertelsen, A.H., Jeng, A. and Tamburini, P.P. 1989. Multiple forms of peptidyl α-amidating enzyme: Purification from rat medullary thyroid carcinoma CA-77 Cell-conditioned medium. Endocrinology 124 (6): 2729–2736.

    Article  CAS  Google Scholar 

  29. Merkler, D.J., Kulathila, R.K., Tamburini, P.P. and Young, S.D. 1992. Selective inactivation of the hydrolase activity of bifunctional rat peptidylglycine α-amidating enzyme. Arch. Biochem. Biophys. 294 (2): 594–602.

    Article  CAS  Google Scholar 

  30. Kumar, M.A., Slack, E., Edwards, A., Soliman, H.A., Baghdianz, A., Foster, G.V. and Maclntyre, I. 1965. A biological assay for calcitonin. J. Endocrin. 33: 469–475.

    Article  CAS  Google Scholar 

  31. Raisz, L.G., Simmons, H.A., Thompson, W.J., Shepard, K.L., Anderson, P.S. and Rodan, G.A. 1988. Effects of a potent carbonic anhydrase inhibitor on boneresorption in organ culture. Endocrinology 122 (3): 1083–1086.

    Article  CAS  Google Scholar 

  32. Rittel, W., Maier, R., Brugger, B., Kamber, B., Rimker, B. and Sieber, P. 1976. Structure activity relationship of calcitonin. III. Biological activity of synthetic analogues with shortened or terminally modified peptide chains. Experimentia 32: 246–248.

    Article  CAS  Google Scholar 

  33. Pratt, G.E., Farnsworth, D.E., Siegel, N.R., Fok, K.F. and Feyereiser, R. 1989. Identification of an allostatin from adult Diploptem punctata. Biochem. Biophys. Res. 163: 1243–1247.

    Article  CAS  Google Scholar 

  34. Eipper, B.A. and Mains, R.E. 1988. Peptide α-amidation. In: Ann. Rev. of Physiology 50: 333–344.

    Article  CAS  Google Scholar 

  35. Mains, R.E., Eipper, B.A., Glembotski, C.C. and Dores, R.M. 1983. Strategies for the biosynthesis of bioactive peptides. Trends in Neuroscience. 6: 229–235.

    Article  CAS  Google Scholar 

  36. Eipper, B.A., Stoffers, D.A. and Mains, R.E. 1992. The biosynthesis of neuro-peptides: Peptide a-amidation. In: Ann. Rev. of Neuroscience 15: 57–85.

    Article  CAS  Google Scholar 

  37. Bertelsen, A.H., Beaudry, G.A., Galella, E.A., Jones, B.N., Ray, M.L. and Mehta, N.M. 1990. Cloning and characterization of two alternatively spliced rata-amidating enzyme cDNAs from medullary thyroid carcinoma. Arch. Biochem. Biophys. 279: 87–96.

    Article  CAS  Google Scholar 

  38. Beaudry, G.A., Mehta, N.M., Ray, M.L. and Bertelsen, A.H. 1990. Purification and characterization of functional recombinant α-amidating enzymesecreted from mammalian Cells. J. Biol. Chem. 265: 17694–17699.

    CAS  PubMed  Google Scholar 

  39. Bongers, J., Felix, A.M., Campbell, R.M., Lee, Y., Merkler, D.J. and Heimer, E.P. 1992. Semisynthesis of human growth hormone-releasing factors by α-amidating enzyme catalyzed oxidation of glycine-extended recursors. Peptide Res. 5 (4): 1–7.

    Google Scholar 

  40. Gilligan, J.P., Lovato, S.J., Young, S.D., Jones, B.N., Koehn, J.A., LeSueur, L.F., Sturmer, A.M., Bertelsen, A.H., Warren, T.G., Birnbaum, R.S. and Roos, B.A. 1986. Characterization of an α-amidating enzyme from rat CA-77 Cells: Its use for the production of recombinant human calcitonin α-met GHRF, p. 38–39. In: Advances in Gene Technology: Molecular Biology of the Endocrine System. D. Duett, F. Ahmad, S. Black, et al. (Eds. ). ICSU Press, Cambridge, UK.

    Google Scholar 

  41. Engels, J.W., Glauder, J., Mullner, H., Tripier, D., Uhlmann, E. and Wetekam, W. 1987. Enzymatic amidation of recombinant (Leu27) growth hormone releasing hormone-gly45. Protein Eng. 1 (3): 195–199.

    Article  CAS  Google Scholar 

  42. Engels, J.W., Glauder, J., Mullner, H., Uhlmann, E., Wetekam, W., Gotoh, T.H. and Scheikl-Lenz, B. 1987. Chemoenzymatic gene synthesis of a gene forhuman growth hormone releasing hormone (hGHRH), Its expression in E. coli and enzymatic amidation. 1987. Nucleosides and Nucleotides 6: 185–195.

    Article  CAS  Google Scholar 

  43. Jones, B.N. 1990. Production of human calcitonin by recombinant DNAtechnology, p. 171–179. In: Fundamentals of Protein Biotechnology. S. Stein (Ed. ). Marcel Dekker, Inc., NY.

    Google Scholar 

  44. Tajima Masahiro Iida, I., Kaminuma, T., Yanagi, M. and Fukushima, S. 1991. High level synthesis in Escherichia coli of recombinant human calcitonin: Collagenase cleavage of the fusion protein and peptidylglycine α-amidation. J. Perm, and Bioeng. 72 (5): 362–367.

    Article  Google Scholar 

  45. Ray, V.L., VanDuyne, P., Shields, P.P., Charles, D., Merkler, D.J., Consalvo, A.P., Gilligan, J.P., Bertelsen, A.H. and Young, S.D. 1991. Production of recombinant calcitonin gene-related peptide by in vitro amidation of an E. coli produced peptide. Regulatory Peptides 34 (2): 93.

    Article  Google Scholar 

  46. Mehta, N.M., Gilligan, J.P., Jones, B.N., Bertelsen, A.H., Roos, B.A. and Birnbaum, R.S. 1988. Purification of a peptidyl glycine α-amidating enzyme from transplantable rat medullary thyroid carcinomas. Arch. Biochem. Biophys. 261: 44–54.

    Article  CAS  Google Scholar 

  47. Guttman, S. 1981. Chemistry and structure-activity relationship of natural andsynthetic calcitonins. In: Calcitonin 1980. A. Pecile (Ed. ). Excerpta Medica,Amsterdam.

    Google Scholar 

  48. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.

    Google Scholar 

  49. Kraft, R., Tardiff, J., Krauter, K.S. and Leinwand, L.A. 1988. Using mini-prep plasmid DNA for sequencing double-stranded templates with Sequenase™. Biotechnique 6 (5): 544–549.

    CAS  Google Scholar 

  50. Weaver, K., Chen, D., Walton, L., Elwell, L. and Ray, P. 1990. Uridinephosphorylase purified from total crude extracts of Eschericia coli. BioPharm. July-August: 25–28.

    Google Scholar 

  51. Simons, P.C. and VanderJagt, D.L. 1977. Purification of glutathione-S-frans-ferases from human liver by glutathione affinity chromatography. Anal. Bio chem. 82: 334–341.

    CAS  Google Scholar 

  52. Wetzel, R., Kleid, D.G., Crea, R., Heyneker, H.L., Yansura, D.G., Hirose, T.A., Riggs, A.D., Itakura, K. and Goeddel, D.V. 1981. Expression in Escherichia coli of a chemically synthesized gene for a “mini-C” analog of human proinsulin. Gene 16: 63–71.

    Article  CAS  Google Scholar 

  53. Jones, B.N., Tamburini, P.T., Consalvo, A.P., Young, S.D., Lovato, S.J., Gilligan, J.P., Jeng, A.Y. and Wennogle, L.P. 1988. A fluorometric assay for peptidyl α-amidation activity using high performance liquid chromatography. Anal. Biochem. 68: 272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, M., Duyne, P., Bertelsent, A. et al. Production of Recombinant Salmon Calcitonin by In Vitro Amidation of an Escherichia coli Produced Precursor Peptide. Nat Biotechnol 11, 64–70 (1993). https://doi.org/10.1038/nbt0193-64

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0193-64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing