Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

A Universal Expression–Purification System Based on the Coiled–Coil Interaction of Myosin Heavy Chain

Abstract

We have constructed a series of Escherichia coli expression vectors that produce high yields of fusion proteins containing the C–terminal fragment of light meromyosin (LMM) from rabbit fast skeletal muscle. The fusion proteins retain the ability of LMM to form polymers in low salt and to be soluble in high salt. Thus they can be easily purified from bacterial extracts with a high salt–low salt extraction procedure and still retain their biochemical properties. We demonstrate the utility of this system for the heterologous production and simple purification of LMM fusions of p21H–ras, the neurofibromatosis type I protein and the Tat and protease proteins of HIV–1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Amann, E., Brosius, J. and Ptashne, M. 1983. Vectors bearing a hybrid trplac. promoter useful for regulated expression of cloned genes in Escherichia coli. Gene 25: 167–178.

    Article  CAS  Google Scholar 

  2. Remaut, E., Stanssens, P. and Fiers, W. 1981. Plasmid vectors for high efficiency expression controlled by the PL promoter of coliphage lamda. Gene 15: 81–93.

    Article  CAS  Google Scholar 

  3. Tabor, S. and Richardson, C.C. 1985. A bacteriophage T7 RNA polymerase/promoter system for controlled expression of specific genes. Proc. Natl. Acad. Sci. USA 82: 1074–1078.

    Article  CAS  Google Scholar 

  4. Marston, F.A.O. 1986. The purification of eucaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240 1–12.

    Article  CAS  Google Scholar 

  5. Gray, M.R., Colot, H.V. and Rosbash, M. 1982. Open reading frame cloning: identification, cloning and expression of open reading frame DNA. Proc. Natl. Acad. Sci. USA 79: 6598–6602.

    Article  CAS  Google Scholar 

  6. Koenen, M., Rüther, U. and Müller-Hill, B. 1982. Immunoenzymatic detection of expressed gene fragments cloned in the lacZ gene of Escherichia coli. EMBO J. 1: 509–512.

    Article  CAS  Google Scholar 

  7. Rimm, D.L. and Pollard, T.D. 1989. New plasmid vectors for high level synthesis of eucaryotic fusion proteins in Escherichia coli. Gene 75: 323–327.

    Article  CAS  Google Scholar 

  8. Uhlen, M., Nilsson, B., Guss, B., Lindberg, M., Gatenbeck, S. and Philipson, L. 1983. Gene fusion vectors based on the gene for staphylococcal protein A. Gene 23: 369–378.

    Article  CAS  Google Scholar 

  9. Stanley, K.K. and Luzio, J.P. 1984. Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO J. 3: 1429–1434.

    Article  CAS  Google Scholar 

  10. Smith, D.B. and Johnson, K.S. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67 31–40.

    Article  CAS  Google Scholar 

  11. Guan, K. 1991. Eucaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192: 262–267.

    Article  CAS  Google Scholar 

  12. Bedouelle, H. and Duplay, P. 1988. Production in Escherichia coli and one-step purification of bifunctional hybrid proteins which bind maltose. Eur. J. Biochem. 171: 541–549.

    Article  CAS  Google Scholar 

  13. Maina, C.V., Riggs, P.D. Grandea, A.G. III, Slatko, B.E., Moran, L.S., Tagliamonte, J.A., McReynolds, L.A. and diGuan, G. 1988. An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene 74: 365–373.

    Article  CAS  Google Scholar 

  14. Maeda, K., Rösch, A., Maéda, Y., Kalbitzer, H.R. and Wittinghofer, A. 1991. Rabbit skeletal muscle myosin. Unfolded carboxyl-terminus and its role in molecular assembly. FEBS Lett. 281 23–36.

    Article  CAS  Google Scholar 

  15. Kalbitzer, H.R., Maeda, K., Rösch, A., Maéda, Y., Geyer, M., Beneicke, W., Neidig, K.P. and Wittinghofer, A. 1991. C-terminal structure and mobility of rabbit skeletal myosin light meromyosin as studied by one- and two-dimensional 1H NMR spectroscopy and X-ray small-angle scattering. Biochemistry 30: 8083–8091.

    Article  CAS  Google Scholar 

  16. Maeda, K., Sczakiel, G. and Wittinghofer, A. 1987. Characterization of cDNA coding for the complete light meromyosin portion of rabbit fast skeletal muscle myosin heavy chain. Eur. J. Biochem. 167: 97–102.

    Article  CAS  Google Scholar 

  17. Amann, E. and Brosius, J. 1985. ‘ATG’ vectors for regulated high-level expression of cloned genes in Escherichia coli. Gene 40: 183–190.

    Article  CAS  Google Scholar 

  18. Barbacid, M. 1987. ras genes. Ann. Rev. Biochem. 56: 779–827.

    Article  CAS  Google Scholar 

  19. Tucker Sczakiel, G., Feuerstein, J., John, J., Goody, R.S. and Wittinghofer, A. 1986. Expression of p21 proteins in Escherichia coli and stereochemistry of the nucleotide-binding site. EMBO J. 5: 1351–1358.

    Article  Google Scholar 

  20. Feuerstein, J., Goody, R.S. and Wittinghofer, A. 1987. Preparation and characterization of nucleotide-free and metal ion-free p21 “apoprotein”. J. Biol. Chem. 262: 8455–8458.

    CAS  PubMed  Google Scholar 

  21. Poe, M., Scolnick, E.M. and Stein, R.B. 1985. Viral Harvey ras p21 expressed in Escherichia coli purifies as a binary one-to-one complex with GDP. J. Biol. Chem. 260: 3906–3909.

    CAS  PubMed  Google Scholar 

  22. John, J., Frech, M. and Wittinghofer, A. 1988. Biochemical properties of Ha-ras encoded p21 mutants and mechanism of the autophosphorylation reaction. J. Biol. Chem. 263: 11792–11799.

    CAS  PubMed  Google Scholar 

  23. Trahey, M. and McCormick, F. 1987. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238: 542–545.

    Article  CAS  Google Scholar 

  24. Vogel, U., Dixon, R.A.E., Schaber, M.D., Diehl, R.E., Marshall, M.S., Scolnick, E.M., Sigal, I.S. and Gibbs, J.B. 1988. Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335 90–93.

    Article  CAS  Google Scholar 

  25. Gideon, P., John, J., Frech, M., Lautwein, A., Clark, R., Scheffler, J.E. and Wittinghofer, A. 1992. Mutational and kinetic analysis of the GTPase-Activating Protein (GAP)-p21 interaction: The C-terminal domain of GAP is not sufficient for full activity. Mol. Cell. Biol. 12: 2050–2056.

    Article  CAS  Google Scholar 

  26. Martin, G.A., Viskochil, D., Bollag, G., McCabe, P.C., Crosier, W.J., Haubruck, H., Conroy, L., Clark, R., O'Connel, P., Cawthon, R.M., Innis, M.A. and McCormick, F. 1991. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63: 843–849.

    Article  Google Scholar 

  27. Xu, G., Lin, B., Tanaka, K., Dunn, D., Wood, D., Gesteland, R., White, R., Weiss, R. and Tamanoi, F. 1991. The catalytic domain of the neurofibrmatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63: 835–841.

    Article  Google Scholar 

  28. Ballester, R., Marchuk, D., Boguski, M., Saulino, A., Letcher, R., Wigler, M. and Collins, F. 1991. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63: 851–859.

    Article  Google Scholar 

  29. Harrington, W.F. and Himmelfarb, S. 1972. Effect of adenosine di-and triphosphates on the stability of synthetic myosin filaments. Biochemistry 11: 2945–2952.

    Article  CAS  Google Scholar 

  30. Oriol-Audit, C., Lake, J.A. and Reisler, K. 1981. Structural changes in synthetic myosin filaments and their dissociation by adenosine triphosphate and pyrophosphate. Biochemistry 20: 679–686.

    Article  CAS  Google Scholar 

  31. Reisler, E., Cheung, P., Borochow, N. and Lake, J.A. 1986. Monomers, dimers, and minifilaments of vertebrate skeletal myosin in the presence of sodium pyrophosphate. Biochemistry 25: 326–332.

    Article  CAS  Google Scholar 

  32. Arya, S.K., Guo, C.S.F. and Wong-Staal, F. 1985. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science 229 69–74.

    Article  CAS  Google Scholar 

  33. Sodroski, J., Patarca, R., Rosen, C., Wong-Staal, F. and Haseltine, W. 1985. Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III. Science 229 74–77.

    Article  CAS  Google Scholar 

  34. Frankel, A.D., Bredt, D.S. and Pabo, C.O. 1988. Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science 240 70–73.

    Article  CAS  Google Scholar 

  35. Dingwall, C., Ernberg, I., Gait, M., Green, S.M., Heaphy, S., Karn, J., Lowe, A.D., Singh, M. and Skinner, M.A. 1990. HIV-I Tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure. EMBO J. 9: 4145–4153.

    Article  CAS  Google Scholar 

  36. Weeks, K., Ampe, Ch., Schultz, S., Steitz, T. and Crothers, D. 1990. Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science 249: 1281–1285.

    Article  CAS  Google Scholar 

  37. Nagai, K. and Thogersen, H.C. 1987. Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli.. Meth. Enzymol. 153: 461–481.

    Article  CAS  Google Scholar 

  38. Tommasselli, A.G., Howe, W.J., Sawyer, T.K., Wlodawer, A. and Henrikson, R.L. 1991. The complexities of AIDS: an assessment of the HIV protease as a therapeutic agent. Chimicaoggi May, 1991.

  39. Baum, F.Z., Bebernitz, G.A. and Gluzman, Y. 1990. Isolation of mutants of human immunodeficiency virus protease based on the toxicity of the enzyme in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 87: 5573–5577.

    Article  CAS  Google Scholar 

  40. Baum, E.Z., Bebernitz, G.A. and Gluzman, Y. 1990. β-galactosidase containing a human immunodeficiency virus protease cleavage site is cleaved and inactivated by human immunodeficiency virus protease. Proc. Natl. Acad. Sci. USA 87: 10123–10027.

    Google Scholar 

  41. Loeb, D.D., Swanstrom, R., Everitt, L., Manchester, M., Stamper, S.E. and Hulchinson, C.A. III Complete mutagenesis of the HIV-1 protease. Nature 340: 397–400.

    Article  CAS  Google Scholar 

  42. Bischoff, F.R. and Ponstingl, H. 1991. Catalysis of guanine nucleotide exchange on ran by the mitotic regulator RCCI. Nature 354 80–82.

    Article  CAS  Google Scholar 

  43. Pohlner, J., Klauser, T., Kuttler, E. and Halter, R. 1992. Sequence-specific cleavage of protein fusions using a rccombinant neisseria type 2 IgA protease. Bio/Technology 10: 799–804.

    CAS  PubMed  Google Scholar 

  44. Wiesmüller, L. and Wittinghofer, A. 1992. Expression of the GTPase activating domain of the neurofibromatosis type 1 (NF1) gene in E. coli and role of the conserved lysine residue. J. Biol. Chem. 267: 10207–10210.

    Google Scholar 

  45. Wieland, U., Kühn, J.E., Jassoy, C., Rubsamen-Waigmann, H., Wolber, V. and Braun, R. 1990. Antibodies to recombinant HIV-1 Vif, Tat, and Net proteins in human sera. Med. Microbiol. Immunol. 179 1–11.

    Article  CAS  Google Scholar 

  46. John, J., Schlichting, I., Schillz, E., Rösch, P. and Wittinghofer, A. 1989. C-terminal truncation of p21H preserves crucial kinetic and structural properties. J. Biol. Chem. 264: 13086–13092.

    CAS  PubMed  Google Scholar 

  47. Frech, M., John, M., Pizon, V., Chardian, R., Taviiian, A., Clark, R., McCormick, F. and Wittinghofer, A. 1990. Inhibition of GTPase activating protein stimulation of ras-p21 GTPase by the Krev-l gene product. Science 249: 169–171.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolber, V., Maeda, K., Schumann, R. et al. A Universal Expression–Purification System Based on the Coiled–Coil Interaction of Myosin Heavy Chain. Nat Biotechnol 10, 900–904 (1992). https://doi.org/10.1038/nbt0892-900

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0892-900

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing