Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Production of the Sweet Protein Monellin in Transgetic Plants

Abstract

Monellin is a protein that elicits a flavor approximately 100,000 times sweeter than sugar on a molar basis. The protein exists naturally as a heterodimer, with its sweet flavor lost upon denaturation. A single–chain monellin gene, encoding both polypeptide chains linked by a hinge sequence, was placed under the control of constitutive and fruit–ripening specific promoters and transferred to lettuce and tomato. Expression of these genes in transgenic tomato and lettuce resulted in the accumulation of monellin protein in fruit and leaf, respectively, to significant levels. Production of monellin in transgenic fruits and vegetables represents an alternative strategy to enhance their flavor and quality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morris, J.A. and Cagan, R.H. 1972. Purification of monellin, the sweet principle of Dioscoreophyllum cumminsii. Biochim. Biophys. Acta 261: 114–122.

    Article  CAS  PubMed  Google Scholar 

  2. Van der Wel, H. and Loeve, K. 1972. Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from Thaumatococcus daniellii Benth. Eur. J. Biochem. 31: 221–225.

    Article  CAS  PubMed  Google Scholar 

  3. Bruwer, J.N., Hellekant, G., Kasahara, Y., Van der Wel, H. and Zotterman, Y. 1973. Electrophysiological study of the gustatory effects of the sweet proteins monellin and thaumatin in monkey, guinea pig and rat. Acta Physiol. Scand. 89: 550–557.

    Article  Google Scholar 

  4. Van der Wal, H. and Arvidson, K. 1978. Qualitative psychophysical studies on the gustatory effects of the sweet tasting proteins thaumatin and monellin. Chem. Senses Flavor 3: 291–299.

    Article  Google Scholar 

  5. Hawker, J.S. 1985. Biochemistry of Storage Carbohydrates in Green Plants, 1–51. Dey, P.M. and Dixon, R.A. (Eds.). Academic Press, London.

  6. Shaw, D.V.J. 1988. Genotypic variation and genotypic correlations for sugars and organic acids of strawberries. Amer. Soc. Hort. Sci. 113: 770–774.

    CAS  Google Scholar 

  7. Frank, G. and Zuber, H. 1976. The complete amino acid sequences of both subunits of the sweet protein monellin. HoppeSeyler's Z. Physiol. Chem. 357: 585–592.

    Article  CAS  Google Scholar 

  8. Hudson, G. and Biemann, K. 1976. Mass spectrometric sequencing of proteins. The structure of subunit I of monellin. Biochem. Biophys. Res. Com. 71: 212–220.

    Article  CAS  PubMed  Google Scholar 

  9. De Vos, A.M., Hatada, M., Van der Wel, H., Krabbedam, H., Peerdeman, A.F. and Kim, S.-H. 1985. Three-dimensional structure of thaumatin I, an intensely sweet protein. Proc. Nat. Acad. Sci. USA 82: 1406–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ogata, C., Hatada, M., Tomlinson, G., Shin, W.-C. and Kim, S.-H. 1987. Crystal structure of the intensely sweet protein monellin. Nature 328: 739–742.

    Article  CAS  PubMed  Google Scholar 

  11. Kim, S.-H., Kang, C.-H., Kim, R., Cho, J.M., Lee, Y.-B. and Lee, T.-K. 1989. Redesigning a sweet protein: increased stability and renaturability. Protein Engineering 2: 571–575.

    Article  CAS  PubMed  Google Scholar 

  12. Higginbotham, J.D. 1979. Protein sweeteners, 87–123. In: Developments in Sweeteners-1. Hough, C.A.M. and Parker, K.J. (Eds.). Applied Science Publishers, London.

    Google Scholar 

  13. Deikman, J. and Fischer, R.L. 1988. Interaction of a DNA binding factor with the 5′-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J. 7: 3315–3320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benfy, P.N., Ren, L. and Chau, N.-H 1989. The CaMV 355 enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J. 8: 2195–2202.

    Article  Google Scholar 

  15. Lürssen, K. 1991. Ethylene and agriculture, p. 315–326. In: The Plant Hormone Ethylene. Mattoo, A.K. and Suttle, J.C. (Eds.). CRC Press, Boca Raton, FL.

    Google Scholar 

  16. Lincoln, J.E. and Fischer, R.L. 1988. Diverse mechanisms for the regulation of ethylene-inducible gene expression. Mol. Gen. Genet. 212: 71–75.

    Article  CAS  PubMed  Google Scholar 

  17. Witty, M. and Harvey, W.J. 1990. Sensory evaluation of transgenic Solanum tuberosum producing r-thaumatin II. New Zealand J. Crop Hortic. Sci. 18: 77–80.

    Article  CAS  Google Scholar 

  18. Giovannoni, J.J., DellaPenna, D., Bennett, A.B. and Fischer, R.L. 1989. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. The Plant Cell 1: 53–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van Haute, E., Joos, H., Maes, M., Warren, G., Van Montagu, M. and Schell, J. 1983. Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. EMBO J. 2: 411–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fillatti, J.J., Kiser, R., Rose, B. and Comai, L. 1987. Efficient transformation of tomato and the introduction and expression of a gene for herbicide tolerance, p. 199–210. In: Tomato Biotechnology. Nevins, D.J. and Jones, R.A. (Eds.). Alan R. Liss, New York.

    Google Scholar 

  22. Bevan, M., 1984. Binary Agrobacterium vectors for plant transformation. Nuc. Acids Res. 12: 8711–8721.

    Article  CAS  Google Scholar 

  23. Michelmore, R., Marsh, E., Seely, S. and Landry, B. 1987. Transformation of lettuce (Lactuca sativa) mediated by Agrobacterium tumefaciens. Plant Cell Reports 6: 439–442.

    CAS  PubMed  Google Scholar 

  24. Ausubel, F.M., Brent, R., Kingson, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. . 1989. Current Protocols in Molecular Biology. Greene Publishing Associates & Wiley-Interscience, New York.

  25. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  26. Schaffner, W. and Weissmann, C. 1973. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal. Biochem. 56: 502–514.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peñarrubia, L., Kim, R., Giovannoni, J. et al. Production of the Sweet Protein Monellin in Transgetic Plants. Nat Biotechnol 10, 561–564 (1992). https://doi.org/10.1038/nbt0592-561

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0592-561

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing