Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RETRACTED ARTICLE: New land-use-change emissions indicate a declining CO2 airborne fraction

This article was retracted on 18 September 2023

Matters Arising to this article was published on 12 April 2023

This article has been updated

Abstract

About half of the anthropogenic CO2 emissions remain in the atmosphere and half are taken up by the land and ocean1. If the carbon uptake by land and ocean sinks becomes less efficient, for example, owing to warming oceans2 or thawing permafrost3, a larger fraction of anthropogenic emissions will remain in the atmosphere, accelerating climate change. Changes in the efficiency of the carbon sinks can be estimated indirectly by analysing trends in the airborne fraction, that is, the ratio between the atmospheric growth rate and anthropogenic emissions of CO2 (refs. 4,5,6,7,8,9,10). However, current studies yield conflicting results about trends in the airborne fraction, with emissions related to land use and land cover change (LULCC) contributing the largest source of uncertainty7,11,12. Here we construct a LULCC emissions dataset using visibility data in key deforestation zones. These visibility observations are a proxy for fire emissions13,14, which are — in turn — related to LULCC15,16. Although indirect, this provides a long-term consistent dataset of LULCC emissions, showing that tropical deforestation emissions increased substantially (0.16 Pg C decade−1) since the start of CO2 concentration measurements in 1958. So far, these emissions were thought to be relatively stable, leading to an increasing airborne fraction4,5. Our results, however, indicate that the CO2 airborne fraction has decreased by 0.014 ± 0.010 decade−1 since 1959. This suggests that the combined land–ocean sink has been able to grow at least as fast as anthropogenic emissions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visibility-derived LULCC emissions for two key deforestation regions.
Fig. 2: Global LULCC emissions and other time series required for computing the AF.
Fig. 3: AF trend estimates on the basis of three different LULCC emission datasets.
Fig. 4: Sensitivity of the AF trend to average annual LULCC emissions and its slope.

Similar content being viewed by others

Data availability

GCP data are publicly available at https://www.globalcarbonproject.org/carbonbudget. The ENSO index was based on anomalies in Niño 3 SSTs, which are publicly available at https://psl.noaa.gov/gcos_wgsp/Timeseries /Data/nino3.long.anom.data. Gridded visibility-based fire emissions can be found at the CMIP6 forcing data repository (https://esgf-node.llnl.gov/search/input4mips/). All input data, including the Houghton and Nassikas dataset27, have been made available at https://doi.org/10.5281/zenodo.5617953.

Code availability

The Python code that was used to assimilate the raw data and perform the analyses is available at https://doi.org/10.5281/zenodo.5617953.

Change history

  • 19 December 2022

    Editor's Note: Readers are alerted that the trend analyses reported in this manuscript are currently in question. Appropriate editorial action will be taken once this matter is resolved.

  • 18 September 2023

    This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1038/s41586-023-06605-4

References

  1. Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021) (in the press).

  2. McKinley, G. A., Fay, A. R., Takahashi, T. & Metzl, N. Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales. Nat. Geosci.4, 606–610 (2011).

    Article  ADS  CAS  Google Scholar 

  3. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature520, 171–179 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Le Quéré, C., Raupach, M. R., Canadell, J. G. & Al, G. M. Trends in the sources and sinks of carbon dioxide. Nat. Geosci.2, 831–836 (2009).

    Article  ADS  Google Scholar 

  5. Raupach, M. R. et al. The declining uptake rate of atmospheric CO2 by land and ocean sinks. Biogeosciences11, 3453–3475 (2014).

    Article  ADS  Google Scholar 

  6. Knorr, W. Is the airborne fraction of anthropogenic CO2 emissions increasing? Geophys. Res. Lett.36, L21710 (2009).

    Article  ADS  Google Scholar 

  7. Gloor, M., Sarmiento, J. L. & Gruber, N. What can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction? Atmos. Chem. Phys.10, 7739–7751 (2010).

    Article  ADS  CAS  Google Scholar 

  8. Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun.7, 13428 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sarmiento, J. L. et al. Trends and regional distributions of land and ocean carbon sinks. Biogeosciences7, 2351–2367 (2010).

    Article  ADS  CAS  Google Scholar 

  10. Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P. & White, J. W. C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature488, 70–72 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data12, 3269–3340 (2020).

    Article  ADS  Google Scholar 

  12. Mahowald, N. M. et al. Interactions between land use change and carbon cycle feedbacks. Global Biogeochem. Cycles31, 96–113 (2017).

    Article  CAS  Google Scholar 

  13. Field, R. D., van der Werf, G. R. & Shen, S. S. P. Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat. Geosci.2, 185–188 (2009).

    Article  ADS  CAS  Google Scholar 

  14. van Marle, M. J. E. et al. Fire and deforestation dynamics in Amazonia (1973–2014). Global Biogeochem. Cycles31, 24–38 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl Acad. Sci. USA103, 14637–14641 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Wees, D. et al. The role of fire in global forest loss dynamics. Glob. Change Biol.27, 2377–2391 (2021).

    Article  ADS  Google Scholar 

  17. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature408, 184–187 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Friedlingstein, P. & Prentice, I. Carbon–climate feedbacks: a review of model and observation based estimates. Curr. Opin. Environ. Sustain.2, 251–257 (2010).

    Article  Google Scholar 

  19. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science333, 988–993 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature451, 49–52 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature579, 80–87 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Le Quéré, C. et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science316, 1735–1738 (2007).

    Article  ADS  PubMed  Google Scholar 

  23. Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol.17, 2261–2270 (2011).

    Article  ADS  Google Scholar 

  24. Morton, D. C. et al. Agricultural intensification increases deforestation fire activity in Amazonia. Glob. Change Biol.14, 2262–2275 (2008).

    Article  ADS  Google Scholar 

  25. Otón, G., Lizundia-Loiola, J., Pettinari, M. L. & Chuvieco, E. Development of a consistent global long-term burned area product (1982–2018) based on AVHRR-LTDR data. Int. J. Appl. Earth Obs. Geoinf.103, 102473 (2021).

    Google Scholar 

  26. van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data9, 697–720 (2017).

    Article  ADS  Google Scholar 

  27. Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land-cover change 1850–2015. Global Biogeochem. Cycles31, 456–472 (2017).

    Article  ADS  CAS  Google Scholar 

  28. Brondizio, E. S. & Moran, E. F. Level-dependent deforestation trajectories in the Brazilian Amazon from 1970 to 2001. Popul. Environ.34, 69–85 (2012).

    Article  Google Scholar 

  29. Houghton, R. A. How well do we know the flux of CO2 from land-use change? Tellus B Chem. Phys. Meteorol.62, 337–351 (2010).

    Article  ADS  Google Scholar 

  30. van der Werf, G. R. et al. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science303, 73–76 (2004).

    Article  ADS  PubMed  Google Scholar 

  31. Tans, P. & Keeling, R. Trends in atmospheric carbon dioxide. National Oceanic & Atmospheric Administration, Earth System Research Laboratories (NOAA/ESRL) and Scripps Institution of Oceanography. http://www.esrl.noaa.gov/gmd/ccgg/trends/ and http://scrippsco2.ucsd.edu/ (accessed 24 January 2021).

  32. Boden, T. A., Marland, G. & Andres, R. J. Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. http://cdiac.ornl.gov/trends/emis/overview_2013.htmlhttps://doi.org/10.3334/CDIAC/00001_V2016 (2016).

  33. Ramo, R. et al. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl Acad. Sci. USA118, e2011160118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Booth, B. B. B. et al. Narrowing the range of future climate projections using historical observations of atmospheric CO2. J. Clim.30, 3039––3053 (2017).

    Article  ADS  Google Scholar 

  35. Hausfather, Z. & Peters, G. P. Emissions – the ‘business as usual’ story is misleading. Nature577, 618–620 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA117, 19656–19657 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones, C. et al. Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J. Clim.26, 4398–4413 (2013).

    Article  ADS  Google Scholar 

  38. Gruber, N. Carbon at the coastal interface. Nature517, 148–149 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Zaehle, S. & Friend, A. D. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Global Biogeochem. Cycles24, GB1005 (2010).

    Article  ADS  Google Scholar 

  40. Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature458, 1014–1017 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change7, 148–152 (2017).

    Article  ADS  CAS  Google Scholar 

  42. Watson, A. J. et al. Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. Nat. Commun.11, 4422 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science370, 1295–1300 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Trade. FAOSTAT online database. Food and Agriculture Organization of the United Nationshttp://www.fao.org/faostat/en/#data (accessed 19 August 2021).

  45. Gilfillan, D. & Marland, G. CDIAC-FF: global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017. Earth Syst. Sci. Data13, 1667–1680 (2021).

    Article  ADS  Google Scholar 

  46. Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature524, 335–338 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Houghton, R. A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B Chem. Phys. Meteorol.55, 378–390 (2003).

    ADS  Google Scholar 

  48. Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences7, 1505–1514 (2010).

    Article  ADS  CAS  Google Scholar 

  49. Hansis, E., Davis, S. J. & Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. Global Biogeochem. Cycles29, 1230–1246 (2015).

    Article  ADS  CAS  Google Scholar 

  50. Gasser, T. et al. Historical CO2 emissions from land use and land cover change and their uncertainty. Biogeosciences17, 4075–4101 (2020).

    Article  ADS  CAS  Google Scholar 

  51. Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl Acad. Sci. USA113, 9204–9209 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. van Marle, M. J. E. et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev.10, 3329–3357 (2017).

    Article  ADS  Google Scholar 

  53. van der Werf, G. R. et al. CO2 emissions from forest loss. Nat. Geosci.2, 737–738 (2009).

    Article  ADS  Google Scholar 

  54. Dlugokencky, E. & Tans, P. Trends in atmospheric carbon dioxide. National Oceanic & Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL)http://www.esrl.noaa.gov/gmd/ccgg/trends/gl_gr.html (accessed 19 August 2021).

  55. Gregg, J. S., Andres, R. J. & Marland, G. China: emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys. Res. Lett.35, L08806 (2008).

    Article  ADS  Google Scholar 

  56. Raupach, M. R., Canadell, J. G. & Le Quéré, C. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction. Biogeosciences5, 1601–1613 (2008).

    Article  ADS  CAS  Google Scholar 

  57. Ammann, C. M. A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett.30, 483–487 (2003).

    Article  Google Scholar 

  58. Riahi, K. et al. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim. Change109, 33–57 (2011).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the European Research Council (ERC) grant number 280061 and the Netherlands Organization for Scientific Research (NWO) (Vici scheme research programme, no. 016.160.324).

Author information

Authors and Affiliations

Authors

Contributions

G.R.vdW. designed the research, M.J.E.vM., R.D.F. and R.A.H. constructed the LULCC time series, D.vW. performed the AF trend analysis with help from J.V., the paper was written by D.vW., M.J.E.vM. and G.R.vdW.

Corresponding author

Correspondence to Guido. R. van der Werf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Emilio Chuvieco, Chris Jones and Tom Oda for their contribution to the peer review of this work.

Additional information

Extended data

is available for this paper at https://doi.org/10.1038/s41586-021-04376-4.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1038/s41586-023-06605-4"

Extended data figures and tables

Extended Data Fig. 1 RCP8.5-projected and observed evolution of atmospheric CO2 growth using our LULCC data.

RCP8.5-projected (background) and observed (forefront) atmospheric CO2 growth over 2010–2020 on the basis of observed concentrations, sources from fossil fuel burning, cement manufacturing and LULCC based on this study. Sink strength is computed as the residual. AF is short for airborne fraction and the numbers indicate what the difference is between observed values and RCP8.5 projections for each component.

Extended Data Fig. 2 Evolution of RCP8.5-projected and observed anthropogenic emissions and atmospheric CO2 growth rate over 2000–2019.

Fossil fuel emissions increased less than projected in RCP8.5 after 2012, but this was partly compensated for by higher-than-projected LULCC emissions in most years.

Extended Data Fig. 3 RCP8.5-projected and observed evolution of atmospheric CO2 growth on the basis of other LULCC datasets.

RCP8.5-projected (background) and observed (forefront) evolution of atmospheric CO2 growth over 2010–2020 on the basis of observed concentrations, sources from fossil fuel burning, cement manufacturing and LULCC on the basis of the GCP (a) and H&N (b). Sink strength is computed as the residual. AF is short for airborne fraction and the numbers indicate what the difference is between observed values and RCP8.5 projections for each component.

Extended Data Fig. 4 Schematic overview for production of LULCC emissions.

This overview shows our method to construct LULCC emissions on the basis of fire emissions in key deforestation zones of GFED4s (1997–2019) and visibility-based Bext anchored to GFED4s for the preceding period. These were supplemented by non-fire emissions including those stemming from peat dynamics in EQAS.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Marle, M.J.E., van Wees, D., Houghton, R.A. et al. RETRACTED ARTICLE: New land-use-change emissions indicate a declining CO2 airborne fraction. Nature 603, 450–454 (2022). https://doi.org/10.1038/s41586-021-04376-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04376-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing