Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reconciling controversies about the ‘global warming hiatus’

Abstract

Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the ‘global warming hiatus’, caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of ‘hiatus’ and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnitude of and interest in the hiatus.
Figure 2: Hiatus definitions and representation in different datasets.
Figure 3: Surface temperature trends for the period 1998–2012.
Figure 4: Climate indices and global temperature.
Figure 5: Reconciling observed and modelled temperatures.

References

  1. Carter, B. There IS a problem with global warming... it stopped in 1998. The Telegraphhttp://www.telegraph.co.uk/comment/personal-view/3624242/There-IS-a-problem-with-global-warming...-it-stopped-in-1998.html (2006)

  2. Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res. Atmos. 111, D12106 (2006)

    ADS  Google Scholar 

  3. Kerr, R. What happened to global warming? Scientists say just wait a bit. Science 326, 28–29 (2009)

    ADS  CAS  PubMed  Google Scholar 

  4. Easterling, D. R. & Wehner, M. F. Is the climate warming or cooling? Geophys. Res. Lett. 36, L08706 (2009)

    ADS  Google Scholar 

  5. Lean, J. L. & Rind, D. H. How will Earth’s surface temperature change in future decades? Geophys. Res. Lett. 36, L15708 (2009)

    ADS  Google Scholar 

  6. Knight, J. et al. Do global temperature trends over the last decade falsify climate predictions? Bull. Am. Meteorol. Soc. 90, 22–23 (2009)

    Google Scholar 

  7. Hunt, B. G. The role of natural climatic variation in perturbing the observed global mean temperature trend. Clim. Dyn. 36, 509–521 (2011)

    Google Scholar 

  8. Foster, G. & Rahmstorf, S. Global temperature evolution 1979–2010. Environ. Res. Lett. 6, 044022 (2011)

    ADS  Google Scholar 

  9. Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Chang. 1, 360–364 (2011)

    ADS  Google Scholar 

  10. Kaufmann, R. K., Kauppi, H., Mann, M. L. & Stock, J. H. Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl Acad. Sci. USA 108, 11790–11793 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cohen, J. L., Furtado, J. C., Barlow, M., Alexeev, V. A. & Cherry, J. E. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39, L04705 (2012)

    ADS  Google Scholar 

  12. Meehl, G. A. & Teng, H. Case studies for initialized decadal hindcasts and predictions for the Pacific region. Geophys. Res. Lett. 39, L22705 (2012)

    ADS  Google Scholar 

  13. Fyfe, J. C., Gillett, N. P. & Zwiers, F. W. Overestimated global warming over the past 20 years. Nat. Clim. Chang. 3, 767–769 (2013)

    ADS  Google Scholar 

  14. Smith, D. M. et al. Improved surface temperature prediction for the coming decade from a global climate model. Science 317, 796–799 (2007)

    ADS  CAS  PubMed  Google Scholar 

  15. Keenlyside, N. S., Latif, M., Jungclaus, J. H., Kornblueh, L. & Roeckner, E. Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453, 84–88 (2008)

    ADS  CAS  PubMed  Google Scholar 

  16. Mann, M. E. & Park, J. Global modes of surface temperature variability on interannual to century time scales. J. Geophys. Res. 99, 25819–25833 (1994)

    ADS  Google Scholar 

  17. Stouffer, R. J., Hegerl, G. & Tett, S. A comparison of surface air temperature variability in three 1000-yr coupled ocean-atmosphere model integrations. J. Clim. 13, 513–537 (2000)

    ADS  Google Scholar 

  18. Watts, R. G. & Morantine, M. C. Is the greenhouse gas-climate signal hiding in the deep ocean? Clim. Change 18, iii–vi (1991)

    Google Scholar 

  19. Whitehouse, D. Met office says no warming before 2017: how did the media do? The Global Warming Policy Forumhttp://www.thegwpf.com/met-office-warming-2017-media-do/ (2013)

  20. Boykoff, M. T. Media discourse on the climate slowdown. Nat. Clim. Chang. 4, 156–158 (2014)

    ADS  Google Scholar 

  21. Showstack, R. White House climate action plan hotly debated in senate hearing. Eos Trans. 95, 34–35 (2014)

    ADS  Google Scholar 

  22. Hawkins, E., Edwards, T. & McNeall, D. Pause for thought. Nat. Clim. Chang. 4, 154–156 (2014)

    ADS  Google Scholar 

  23. Lewandowsky, S., Oreskes, N., Risbey, J. S., Newell, B. R. & Smithson, M. Seepage: Climate change denial and its effect on the scientific community. Glob. Environ. Change 33, 1–13 (2015)

    Google Scholar 

  24. Lewandowsky, S., Risbey, J. S. & Oreskes, N. The ‘pause’ in global warming: turning a routine fluctuation into a problem for science. Bull. Am. Meteorol. Soc. 97, 723–733 (2016)

    ADS  Google Scholar 

  25. Fyfe, J. C. et al. Making sense of the early-2000s warming slowdown. Nat. Clim. Chang. 6, 224–228 (2016)

    ADS  Google Scholar 

  26. Flato, G. J. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 9 (Cambridge Univ. Press, 2013)

  27. Trenberth, K. E. & Fasullo, J. T. An apparent hiatus in global warming? Earths Futur. 1, 19–32 (2013)

    ADS  Google Scholar 

  28. Huber, M. & Knutti, R. Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat. Geosci. 7, 651–656 (2014)

    ADS  CAS  Google Scholar 

  29. Schmidt, G. A., Shindell, D. T. & Tsigaridis, K. Reconciling warming trends. Nat. Geosci. 7, 158–160 (2014)

    ADS  CAS  Google Scholar 

  30. Lewandowsky, S., Risbey, J. S. & Oreskes, N. On the definition and identifiability of the alleged ‘hiatus’ in global warming. Sci. Rep. 5, 16784 (2015)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yan, X.-H. et al. The global warming hiatus: slowdown or redistribution? Earths Futur. 4, 472–482 (2016)

    ADS  CAS  Google Scholar 

  32. Hansen, J. et al. Global temperature change. Proc. Natl Acad. Sci. USA 103, 14288–14293 (2006)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trenberth, K. E., Fasullo, J. T., Branstator, G. & Phillips, A. S. Seasonal aspects of the recent pause in surface warming. Nat. Clim. Chang. 4, 911–916 (2014)

    ADS  Google Scholar 

  34. Knutti, R., Rogelj, J., Sedlácˇek, J. & Fischer, E. M. A scientific critique of the two-degree climate change target. Nat. Geosci. 9, 13–18 (2015)

    ADS  Google Scholar 

  35. Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014)

    ADS  Google Scholar 

  36. Karl, T. R. et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348, 1469–1472 (2015)

    ADS  CAS  PubMed  Google Scholar 

  37. Rajaratnam, B., Romano, J., Tsiang, M. & Diffenbaugh, N. S. Debunking the climate hiatus. Clim. Change 133, 129–140 (2015)

    ADS  Google Scholar 

  38. Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010)

    ADS  Google Scholar 

  39. Cahill, N., Rahmstorf, S. & Parnell, A. C. Change points of global temperature. Environ. Res. Lett. 10, 084002 (2015)

    ADS  Google Scholar 

  40. Lin, M. & Huybers, P. Revisiting whether recent surface temperature trends agree with the CMIP5 ensemble. J. Clim. 29, 8673–8687 (2016)

    ADS  Google Scholar 

  41. Foster, G. & Abraham, J. Lack of evidence for a slowdown in global temperature. US Clivar Var. 13, 6–9 (2015)

    Google Scholar 

  42. Ying, L., Shen, Z. & Piao, S. The recent hiatus in global warming of the land surface: scale-dependent breakpoint occurrences in space and time. Geophys. Res. Lett. 42, 6471–6478 (2015)

    ADS  Google Scholar 

  43. Risbey, J. S. et al. Well-estimated global surface warming in climate projections selected for ENSO phase. Nat. Clim. Chang. 4, 835–840 (2014)

    ADS  Google Scholar 

  44. Palmer, M. D., McNeall, D. J. & Dunstone, N. J. Importance of the deep ocean for estimating decadal changes in Earth’s radiation balance. Geophys. Res. Lett. 38, L12707 (2011)

    Google Scholar 

  45. Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M. & Mann, M. E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 32, L20708 (2005)

    ADS  Google Scholar 

  46. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997)

    ADS  Google Scholar 

  47. Balmaseda, M. A., Trenberth, K. E. & Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013)

    ADS  Google Scholar 

  48. Trenberth, K. E., Caron, J. M., Stepaniak, D. P. & Worley, S. Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res. 107, 4065 (2002)

    Google Scholar 

  49. von Schuckmann, K. et al. An imperative to monitor Earth’s energy imbalance. Nat. Clim. Chang. 6, 138–144 (2016)

    ADS  Google Scholar 

  50. Palmer, M. D. & McNeall, D. J. Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ. Res. Lett. 9, 034016 (2014)

    ADS  Google Scholar 

  51. Trenberth, K. E. & Stepaniak, D. P. The flow of energy through the Earth’s climate system. Q. J. R. Meteorol. Soc. 130, 2677–2701 (2004)

    ADS  Google Scholar 

  52. Cazenave, A. et al. Sea level budget over 2003–2008. A reevaluation from GRACE space gravimetry, satellite altimetry and ARGO. Global Planet. Change 65, 83–88 (2009)

    ADS  Google Scholar 

  53. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012)

    ADS  Google Scholar 

  54. Abraham, J. P. et al. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys. 51, 450–483 (2013)

    ADS  Google Scholar 

  55. Llovel, W., Willis, J. K., Landerer, F. W. & Fukumori, I. Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nat. Clim. Chang. 4, 1031–1035 (2014)

    ADS  Google Scholar 

  56. Trenberth, K. E., Fasullo, J. T. & Balmaseda, M. A. Earth’s energy imbalance. J. Clim. 27, 3129–3144 (2014)

    ADS  Google Scholar 

  57. Peyser, C. E., Yin, J., Landerer, F. W. & Cole, J. E. Pacific sea level rise patterns and global surface temperature variability. Geophys. Res. Lett. 43, 8662–8669 (2016)

    ADS  Google Scholar 

  58. Bindoff, N. L . et al. in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) Ch. 5 (Cambridge Univ. Press, 2007)

  59. Gleckler, P. J., Durack, P. J., Stouffer, R. J., Johnson, G. C. & Forest, C. E. Industrial-era global ocean heat uptake doubles in recent decades. Nat. Clim. Chang. 6, 394–398 (2016)

    ADS  Google Scholar 

  60. Dai, A., Fyfe, J. C., Xie, S.-P. & Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Chang. 5, 555–559 (2015)

    ADS  Google Scholar 

  61. Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013)

    ADS  CAS  PubMed  Google Scholar 

  62. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Chang. 4, 222–227 (2014)

    ADS  Google Scholar 

  63. Dong, L. & Zhou, T. The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: a competition of global warming, IPO, and AMO. J. Geophys. Res. Atmos. 119, 11272–11287 (2014)

    ADS  Google Scholar 

  64. Mann, M. E., Steinman, B. A. & Miller, S. K. On forced temperature changes, internal variability, and the AMO. Geophys. Res. Lett. 41, 3211–3219 (2014)

    ADS  Google Scholar 

  65. Yao, S.-L., Huang, G., Wu, R.-G. & Qu, X. The global warming hiatus — a natural product of interactions of a secular warming trend and a multi-decadal oscillation. Theor. Appl. Climatol. 123, 349–360 (2016)

    ADS  Google Scholar 

  66. Roberts, C. D., Palmer, M. D., McNeall, D. & Collins, M. Quantifying the likelihood of a continued hiatus in global warming. Nat. Clim. Chang. 5, 337–342 (2015)

    ADS  Google Scholar 

  67. Knutson, T. R., Zhang, R. & Horowitz, L. W. Prospects for a prolonged slowdown in global warming in the early 21st century. Nat. Commun. 7, 13676 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, J., Sun, C. & Jin, F. F. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett. 40, 5497–5502 (2013)

    ADS  Google Scholar 

  69. Robson, J., Ortega, P. & Sutton, R. A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci. 9, 513–517 (2016)

    ADS  CAS  Google Scholar 

  70. Delworth, T. L., Zeng, F., Rosati, A., Vecchi, G. A. & Wittenberg, A. T. A link between the hiatus in global warming and North American drought. J. Clim. 28, 3834–3845 (2015)

    ADS  Google Scholar 

  71. Chen, X. & Tung, K.-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345, 897–903 (2014)

    ADS  CAS  PubMed  Google Scholar 

  72. Thoma, M., Greatbatch, R. J., Kadow, C. & Gerdes, R. Decadal hindcasts initialized using observed surface wind stress: evaluation and prediction out to 2024. Geophys. Res. Lett. 42, 6454–6461 (2015)

    ADS  Google Scholar 

  73. Douville, H., Voldoire, A. & Geoffroy, O. The recent global warming hiatus: what is the role of Pacific variability? Geophys. Res. Lett. 42, 880–888 (2015)

    ADS  Google Scholar 

  74. Knutti, R. & Rugenstein, M. A. A. Feedbacks, climate sensitivity and the limits of linear models. Philos. Trans. R. Soc. A 373, 20150146 (2015)

    ADS  Google Scholar 

  75. Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat. Geosci. 1, 735–743 (2008)

    ADS  CAS  Google Scholar 

  76. Baumberger, C., Knutti, R. & Hirsch Hadorn, G. Building confidence in climate model projections: an analysis of inferences from fit. Wiley Interdiscip. Rev. Clim. Chang. http://dx.doi.org/10.1002/wcc.454 (2017)

  77. Santer, B. D. et al. Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci. 7, 185–189 (2014)

    ADS  CAS  Google Scholar 

  78. Santer, B. D. et al. Observed multivariable signals of late 20th and early 21st century volcanic activity. Geophys. Res. Lett. 42, 500–509 (2015)

    ADS  Google Scholar 

  79. Maher, N., Sen Gupta, A. & England, M. H. Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophys. Res. Lett. 41, 5978–5986 (2014)

    ADS  Google Scholar 

  80. Medhaug, I. & Drange, H. Global and regional surface cooling in a warming climate: a multi-model analysis. Clim. Dyn. 46, 3899–3920 (2016)

    Google Scholar 

  81. Laepple, T. & Huybers, P. Global and regional variability in marine surface temperatures. Geophys. Res. Lett. 41, 2528–2534 (2014)

    ADS  Google Scholar 

  82. Meehl, G. A., Teng, H. & Arblaster, J. M. Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Clim. Chang. 4, 898–902 (2014)

    ADS  Google Scholar 

  83. Meehl, G. A., Hu, A., Santer, B. D. & Xie, S.-P. Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nat. Clim. Chang. 6, 1005–1008 (2016)

    ADS  Google Scholar 

  84. Cowtan, K. et al. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett. 42, 6526–6534 (2015)

    ADS  Google Scholar 

  85. Hansen, J., Sato, M., Kharecha, P. & Von Schuckmann, K. Earth’s energy imbalance and implications. Atmos. Chem. Phys. 11, 13421–13449 (2011)

    ADS  CAS  Google Scholar 

  86. De Saedeleer, B. Climatic irregular staircases: generalized acceleration of global warming. Sci. Rep. 6, 19881 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kellogg, W. W. An apparent moratorium on the greenhouse warming due to the deep ocean. Clim. Change 25, 85–88 (1993)

    ADS  Google Scholar 

  88. Watts, R. G. & Morantine, M. C. Is the greenhouse gas-climate signal hiding in the deep ocean? Re-addressing the issue. Clim. Change 25, 89–90 (1993)

    ADS  Google Scholar 

  89. Rossby, C.-G. in The Atmosphere and the Sea in Motion: Scientific Contributions to the Rossby Memorial Volume (ed. Bolin, B. ) 9–50 (The Rockefeller Institute Press, Oxford Univ, Press, 1959)

  90. Broecker, W. S., Peteet, D. M. & Rind, D. Does the ocean-atmosphere system have more than one stable mode of operation? Nature 315, 21–26 (1985)

    ADS  CAS  Google Scholar 

  91. Wild, M. Global dimming and brightening: a review. J. Geophys. Res. 114, D00D16 (2009)

    ADS  Google Scholar 

  92. Lyman, J. M. et al. Robust warming of the global upper ocean. Nature 465, 334–337 (2010)

    ADS  CAS  PubMed  Google Scholar 

  93. Levitus, S. et al. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, L07608 (2009)

    ADS  Google Scholar 

  94. Fischer, E. M. & Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Chang. 6, 986–991 (2016)

    ADS  Google Scholar 

  95. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009)

    ADS  Google Scholar 

  96. Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future North American climate. Nat. Clim. Chang. 2, 775–779 (2012)

    ADS  Google Scholar 

  97. Meehl, G. A. et al. Decadal climate prediction an update from the trenches. Bull. Am. Meteorol. Soc. 95, 243–267 (2014)

    ADS  Google Scholar 

  98. England, M. H., Kajtar, J. B. & Maher, N. Robust warming projections despite the recent hiatus. Nat. Clim. Chang. 5, 394–396 (2015)

    ADS  Google Scholar 

  99. Peterson, T. C. et al. Homogeneity adjustments of in situ atmospheric climate data: a review. Int. J. Climatol. 18, 1493–1517 (1998)

    Google Scholar 

  100. Parker, D. E. Urban heat island effects on estimates of observed climate change. Wiley Interdiscip. Rev. Clim. Chang. 1, 123–133 (2010)

    Google Scholar 

  101. Thompson, D. W. J., Kennedy, J. J., Wallace, J. M. & Jones, P. D. A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature 453, 646–649 (2008)

    ADS  CAS  PubMed  Google Scholar 

  102. Kent, E. C., Kennedy, J. J., Berry, D. I. & Smith, R. O. Effects of instrumentation changes on sea surface temperature measured in situ. Wiley Interdiscip. Rev. Clim. Chang. 1, 718–728 (2010)

    Google Scholar 

  103. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J. Geophys. Res. Atmos. 117, D8101 (2012)

    ADS  Google Scholar 

  104. Rohde, R. et al. A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinfor. Geostat. An Overview 1, http://dx.doi.org/10.4172/2327-4581.1000101 (2013)

  105. Saffioti, C., Fischer, E. M. & Knutti, R. Contributions of atmospheric circulation variability and data coverage bias to the warming hiatus. Geophys. Res. Lett. 42, 2385–2391 (2015)

    ADS  Google Scholar 

  106. Huang, B. et al. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015)

    ADS  Google Scholar 

  107. Huang, B. et al. Further exploring and quantifying uncertainties for extended reconstructed sea surface temperature (ERSST) version 4 (v4). J. Clim. 29, 3119–3142 (2016)

    ADS  Google Scholar 

  108. Kent, E. C. et al. Global analysis of night marine air temperature and its uncertainty since 1880: the HadNMAT2 dataset. J. Geophys. Res. Atmos. 118, 1281–1298 (2013)

    ADS  Google Scholar 

  109. Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E. & Saunby, M. Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res. 116, D14103 (2011)

    ADS  Google Scholar 

  110. Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E. & Saunby, M. Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res. Atmos. 116, D14104 (2011)

    ADS  Google Scholar 

  111. Kent, E. C. et al. A call for new approaches to quantifying biases in observations of sea-surface temperature. Bull. Am. Meteorol. Soc. (2017). 10.1175/BAMS-D-15-00251.1

  112. Charney, J. G. et al. Carbon Dioxide and Climate: A Scientific Assessment. (National Academy of Sciences, 1979)

  113. Wigley, T. M. L. & Raper, S. C. B. Natural variability of the climate system and detection of the greenhouse effect. Nature 344, 324–327 (1990)

    ADS  Google Scholar 

  114. Hartmann, D. L. et al. in Climate Change 2013 (eds Stocker, T. F. et al.) 159–254 (Cambridge Univ. Press, 2013)

  115. Marotzke, J. & Forster, P. M. Forcing, feedback and internal variability in global temperature trends. Nature 517, 565–570 (2015)

    ADS  CAS  PubMed  Google Scholar 

  116. Santer, B. D. et al. Separating signal and noise in atmospheric temperature changes: The importance of timescale. J. Geophys. Res. 116, D22105 (2011)

    ADS  Google Scholar 

  117. Bala, G. Why the hiatus in global warming in the last decade? Curr. Sci. 105, 1031–1032 (2013)

    Google Scholar 

  118. Brown, P. T., Li, W., Cordero, E. C. & Mauget, S. A. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise. Sci. Rep. 5, 9957 (2015)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Middlemas, E. A. & Clement, A. C. Spatial patterns and frequency of unforced decadal-scale changes in global mean surface temperature in climate models. J. Clim. 29, 6245–6257 (2016)

    ADS  Google Scholar 

  120. Schurer, A. P., Hegerl, G. C. & Obrochta, S. P. Determining the likelihood of pauses and surges in global warming. Geophys. Res. Lett. 42, 5974–5982 (2015)

    ADS  Google Scholar 

  121. Sévellec, F., Sinha, B. & Skliris, N. The rogue nature of hiatuses in a global warming climate. Geophys. Res. Lett. 43, 8169–8177 (2016)

    ADS  Google Scholar 

  122. Johansson, D. J. A., O’Neill, B. C., Tebaldi, C. & Häggström, O. Equilibrium climate sensitivity in light of observations over the warming hiatus. Nat. Clim. Chang. 5, 449–453 (2015)

    ADS  CAS  Google Scholar 

  123. Newman, M. et al. The Pacific Decadal Oscillation, revisited. J. Clim. 29, 4399–4427 (2016)

    ADS  Google Scholar 

  124. Henley, B. J. et al. A tripole index for the Interdecadal Pacific Oscillation. Clim. Dyn. 45, 3077–3090 (2015)

    Google Scholar 

  125. Deser, C., Alexander, M. A., Xie, S.-P. & Phillips, A. S. Sea surface temperature variability: patterns and mechanisms. Annu. Rev. Mar. Sci. 2, 115–143 (2010)

    ADS  Google Scholar 

  126. Bjerknes, J. in Advances in Geophysics (eds Landsberg, H. E. & van Mieghem, J. ) 1–82 (Publisher Academic Press, 1964)

  127. Mann, M. E., Bradley, R. S. & Hughes, M. O. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392, 779–787 (1998)

    ADS  CAS  Google Scholar 

  128. Delworth, T. & Mann, M. E. Observed and simulated multi decadal variability in the Northern Hemisphere. Clim. Dyn. 16, 661–676 (2000)

    Google Scholar 

  129. Gray, S. T., Graumlich, L. J., Betancourt, J. L. & Pederson, G. T. A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophys. Res. Lett. 31, L12205 (2004)

    ADS  Google Scholar 

  130. Saenger, C., Cohen, A. L., Oppo, D. W., Halley, R. B. & Carilli, J. E. Surface-temperature trends and variability in the low-latitude North Atlantic since 1552. Nat. Geosci. 2, 492–495 (2009)

    ADS  CAS  Google Scholar 

  131. Otterå, O. H., Bentsen, M., Drange, H. & Suo, L. External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci. 3, 688–694 (2010)

    ADS  Google Scholar 

  132. Knudsen, M. F., Jacobsen, B. H., Seidenkrantz, M.-S. & Olsen, J. Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age. Nat. Commun. 5, 1–8 (2014)

    Google Scholar 

  133. Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012)

    ADS  CAS  PubMed  Google Scholar 

  134. Zhang, R. et al. Have aerosols caused the observed Atlantic Multidecadal Variability? J. Atmos. Sci. 70, 1135–1144 (2013)

    ADS  Google Scholar 

  135. Sutton, R. T. & Hodson, D. L. R. Atlantic Ocean forcing of North American and European summer climate. Science 309, 115–118 (2005)

    ADS  CAS  PubMed  Google Scholar 

  136. Enfield, D. B., Mestas-Nuñez, A. M. & Trimble, P. J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 28, 2077–2080 (2001)

    ADS  Google Scholar 

  137. Steinman, B. A., Mann, M. E. & Miller, S. K. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science 347, 988–991 (2015)

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  138. Frankcombe, L. M., England, M. H., Mann, M. E. & Steinman, B. A. Separating internal variability from the externally forced climate response. J. Clim. 28, 8184–8202 (2015)

    ADS  Google Scholar 

  139. Marshall, J. et al. North Atlantic climate variability: phenomena, impacts and mechanisms. Int. J. Climatol. 21, 1863–1898 (2001)

    Google Scholar 

  140. Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev. Geophys. 54, 5–63 (2016)

    ADS  Google Scholar 

  141. Medhaug, I. & Furevik, T. North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci. 7, 389–404 (2011)

    ADS  Google Scholar 

  142. Zhang, L. & Wang, C. Multidecadal North Atlantic sea surface temperature and Atlantic Meridional Overturning Circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans 118, 5772–5791 (2013)

    ADS  Google Scholar 

  143. Tandon, N. F. & Kushner, P. J. Does external forcing interfere with the AMOC’s influence on North Atlantic sea surface temperature? J. Clim. 28, 6309–6323 (2015)

    ADS  Google Scholar 

  144. Knutti, R. & Stocker, T. F. Influence of the thermohaline circulation on projected sea level rise. J. Clim. 13, 1997–2001 (2000)

    ADS  Google Scholar 

  145. Lockwood, M. Recent changes in solar outputs and the global mean surface temperature. III. Analysis of contributions to global mean air surface temperature rise. Proc. R. Soc. A. 464, 1387–1404 (2008)

    ADS  Google Scholar 

  146. Lockwood, M. Solar change and climate: an update in the light of the current exceptional solar minimum. Proc. R. Soc. A. 466, 303–329 (2010)

    ADS  Google Scholar 

  147. Hathaway, D. H. The solar cycle. Living Rev. Sol. Phys. 12, 4 (2015)

    ADS  PubMed  PubMed Central  Google Scholar 

  148. Regayre, L. A. et al. Uncertainty in the magnitude of aerosol-cloud radiative forcing over recent decades. Geophys. Res. Lett. 41, 9040–9049 (2014)

    ADS  Google Scholar 

  149. Gettelman, A., Shindell, D. T. & Lamarque, J. F. Impact of aerosol radiative effects on 2000–2010 surface temperatures. Clim. Dyn. 45, 2165–2179 (2015)

    Google Scholar 

  150. Outten, S., Thorne, P., Bethke, I. & Seland, Ø. Investigating the recent apparent hiatus in surface temperature increases: 1. Construction of two 30-member Earth System Model ensembles. J. Geophys. Res. Atmos. 120, 8575–8596 (2015)

    ADS  Google Scholar 

  151. Thorne, P., Outten, S., Bethke, I. & Seland, Ø. Investigating the recent apparent hiatus in surface temperature increases: 2. Comparison of model ensembles to observational estimates. J. Geophys. Res. Atmos. 120, 8597–8620 (2015)

    ADS  Google Scholar 

  152. Kühn, T. et al. Climate impacts of changing aerosol emissions since 1996. Geophys. Res. Lett. 41, 4711–4718 (2014)

    ADS  Google Scholar 

  153. Zhou, C., Zelinka, M. D. & Klein, S. A. Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci. 9, 871–874 (2016)

    ADS  CAS  Google Scholar 

  154. Dessler, A. E. Cloud variations and the Earth’s energy budget. Geophys. Res. Lett. 38, L19701 (2011)

    ADS  Google Scholar 

  155. Myhre, G. et al. Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990–2015. Atmos. Chem. Phys. 17, 2709–2720 (2017)

    ADS  CAS  Google Scholar 

  156. Hofmann, D., Barnes, J., O’Neill, M., Trudeau, M. & Neely, R. Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado. Geophys. Res. Lett. 36, L15808 (2009)

    ADS  Google Scholar 

  157. Vernier, J.-P. et al. Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett. 38, L12807 (2011)

    ADS  Google Scholar 

  158. Brühl, C., Lelieveld, J., Tost, H., Höpfner, M. & Glatthor, N. Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC. J. Geophys. Res. Atmos. 120, 2103–2118 (2015)

    ADS  PubMed  PubMed Central  Google Scholar 

  159. Andersson, S. M. et al. Significant radiative impact of volcanic aerosol in the lowermost stratosphere. Nat. Commun. 6, 7692 (2015)

    ADS  PubMed  Google Scholar 

  160. Solomon, S. et al. The persistently variable ‘background’ stratospheric aerosol layer and global climate change. Science 333, 866–870 (2011)

    ADS  CAS  PubMed  Google Scholar 

  161. Fyfe, J. C., von Salzen, K., Cole, J. N. S., Gillett, N. P. & Vernier, J.-P. Surface response to stratospheric aerosol changes in a coupled atmosphere-ocean model. Geophys. Res. Lett. 40, 584–588 (2013)

    ADS  Google Scholar 

  162. Haywood, J. M., Jones, A. & Jones, G. S. The impact of volcanic eruptions in the period 2000-2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos. Sci. Lett. 15, 92–96 (2014)

    Google Scholar 

  163. Ridley, D. A. et al. Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys. Res. Lett. 41, 7763–7769 (2014)

    ADS  CAS  Google Scholar 

  164. Solomon, S. et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010)

    ADS  CAS  PubMed  Google Scholar 

  165. Wang, Y. et al. The linkage between stratospheric water vapor and surface temperature in an observation-constrained coupled general circulation model. Clim. Dyn. 48, 2671–2683 (2017)

    Google Scholar 

  166. Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M. & Rosenlof, K. H. Stratospheric water vapor feedback. Proc. Natl Acad. Sci. USA 110, 18087–18091 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gilford, D. M., Solomon, S. & Portmann, R. W. Radiative impacts of the 2011 abrupt drops in water vapor and ozone in the tropical tropopause layer. J. Clim. 29, 595–612 (2016)

    ADS  Google Scholar 

  168. Gillett, N. P., Arora, V. K., Flato, G. M., Scinocca, J. F. & von Salzen, K. Improved constraints on 21st-century warming derived using 160 years of temperature observations. Geophys. Res. Lett. 39, L01704 (2012)

    ADS  Google Scholar 

  169. Otto, A. et al. Energy budget constraints on climate response. Nat. Geosci. 6, 415–416 (2013)

    ADS  CAS  Google Scholar 

  170. Stott, P., Good, P., Jones, G., Gillett, N. & Hawkins, E. The upper end of climate model temperature projections is inconsistent with past warming. Environ. Res. Lett. 8, 014024 (2013)

    ADS  Google Scholar 

  171. Lewis, N. & Curry, J. A. The implications for climate sensitivity of AR5 forcing and heat uptake estimates. Clim. Dyn. 45, 1009–1023 (2015)

    Google Scholar 

  172. Gregory, J. M., Andrews, T. & Good, P. The inconstancy of the transient climate response parameter under increasing CO2 . Philos. Trans. R. Soc. A 373, 20140417 (2015)

    ADS  Google Scholar 

  173. Shindell, D. T. Inhomogeneous forcing and transient climate sensitivity. Nat. Clim. Chang. 4, 274–277 (2014)

    ADS  CAS  Google Scholar 

  174. Kummer, J. R. & Dessler, A. E. The impact of forcing efficacy on the equilibrium climate sensitivity. Geophys. Res. Lett. 41, 3565–3568 (2014)

    ADS  Google Scholar 

  175. Armour, K. C. Climate sensitivity on the rise. Nat. Clim. Chang. 6, 896–897 (2016)

    ADS  Google Scholar 

  176. Richardson, M., Cowtan, K., Hawkins, E. & Stolpe, M. B. Reconciled climate response estimates from climate models and the energy budget of Earth. Nat. Clim. Chang. 6, 931–935 (2016)

    ADS  Google Scholar 

  177. Hansen, J. et al. Earth’s energy imbalance: confirmation and implications. Science 308, 1431–1435 (2005)

    ADS  CAS  PubMed  Google Scholar 

  178. Marvel, K., Schmidt, G. A., Miller, R. L. & Nazarenko, L. S. Implications for climate sensitivity from the response to individual forcings. Nat. Clim. Chang. 6, 386–389 (2016)

    ADS  Google Scholar 

  179. Storelvmo, T., Leirvik, T., Lohmann, U., Phillips, P. C. B. & Wild, M. Disentangling greenhouse warming and aerosol cooling to reveal Earth’s climate sensitivity. Nat. Geosci. 9, 286–289 (2016)

    ADS  CAS  Google Scholar 

  180. Winton, M., Takahashi, K. & Held, I. M. Importance of ocean heat uptake efficacy to transient climate change. J. Clim. 23, 2333–2344 (2010)

    ADS  Google Scholar 

  181. Armour, K. C., Bitz, C. M. & Roe, G. H. Time-varying climate sensitivity from regional feedbacks. J. Clim. 26, 4518–4534 (2013)

    ADS  Google Scholar 

  182. Watanabe, M. et al. Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys. Res. Lett. 40, 3175–3179 (2013)

    ADS  Google Scholar 

  183. Rose, B. E. J., Armour, K. C., Battisti, D. S., Feldl, N. & Koll, D. D. B. The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett. 41, 1071–1078 (2014)

    ADS  Google Scholar 

  184. Amaya, D. J., Xie, S.-P., Miller, A. J. & Mcphaden, M. J. Seasonality of tropical Pacific decadal trends associated with the 21st century global warming hiatus. J. Geophys. Res. Oceans 120, 6782–6798 (2015)

    ADS  Google Scholar 

  185. Zhou, C. & Wang, K. Spatiotemporal divergence of the warming hiatus over land based on different definitions of mean temperature. Sci. Rep. 6, 31789 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  186. Garfinkel, C. I., Son, S., Song, K., Aquila, V. & Oman, L. D. Stratospheric variability contributed to and sustained the recent hiatus in Eurasian winter warming. Geophys. Res. Lett. 43, 374–382 (2016)

    Google Scholar 

  187. Li, C., Stevens, B. & Marotzke, J. Eurasian winter cooling in the warming hiatus of 1998-2012. Geophys. Res. Lett. 42, 8131–8139 (2015)

    ADS  Google Scholar 

  188. Robeson, S. M., Willmott, C. J. & Jones, P. D. Trends in hemispheric warm and cold anomalies. Geophys. Res. Lett. 41, 9065–9071 (2014)

    ADS  Google Scholar 

  189. Watanabe, M. et al. Contribution of natural decadal variability to global warming acceleration and hiatus. Nat. Clim. Chang. 4, 893–897 (2014)

    ADS  Google Scholar 

  190. de Boisséson, E., Balmaseda, M. A., Abdalla, S., Källén, E. & Janssen, P. A. E. M. How robust is the recent strengthening of the tropical Pacific trade winds? Geophys. Res. Lett. 41, 4398–4405 (2014)

    ADS  Google Scholar 

  191. Kociuba, G. & Power, S. B. Inability of CMIP5 models to simulate recent strengthening of the walker circulation: implications for projections. J. Clim. 28, 20–35 (2015)

    ADS  Google Scholar 

  192. Saenko, O. A., Fyfe, J. C., Swart, N. C., Lee, W. G. & England, M. H. Influence of tropical wind on global temperature from months to decades. Clim. Dyn. 47, 2193–2203 (2016)

    Google Scholar 

  193. Drijfhout, S. S. et al. Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett. 41, 7868–7874 (2014)

    ADS  Google Scholar 

  194. Luo, J.-J., Sasaki, W. & Masumoto, Y. Indian Ocean warming modulates Pacific climate change. Proc. Natl Acad. Sci. USA 109, 18701–18706 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  195. Han, W. et al. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim. Dyn. 43, 1357–1379 (2014)

    Google Scholar 

  196. Barcikowska, M. J., Knutson, T. R. & Zhang, R. Observed and simulated fingerprints of multidecadal climate variability and their contributions to periods of global SST stagnation. J. Clim. 30, 721–737 (2017)

    ADS  Google Scholar 

  197. Kucharski, F., Kang, I.-S., Farneti, R. & Feudale, L. Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett. 38, L03702 (2011)

    ADS  Google Scholar 

  198. McGregor, S., Timmermann, A., Stuecker, M. F., England, M. H. & Merrifield, M. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Chang. 4, 888–892 (2014)

    ADS  Google Scholar 

  199. Chikamoto, Y., Mochizuki, T., Timmermann, A., Kimoto, M. & Watanabe, M. Potential tropical Atlantic impacts on Pacific decadal climate trends. Geophys. Res. Lett. 43, 7143–7151 (2016)

    ADS  Google Scholar 

  200. Kucharski, F. et al. Atlantic forcing of Pacific decadal variability. Clim. Dyn. 46, 2337–2351 (2016)

    Google Scholar 

  201. Li, X., Xie, S.-P., Gille, S. T. & Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Chang. 6, 275–279 (2016)

    ADS  Google Scholar 

  202. Smith, D. M. et al. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Clim. Chang. 6, 936–940 (2016)

    ADS  CAS  Google Scholar 

  203. Meehl, G. A., Hu, A., Arblaster, J. M., Fasullo, J. T. & Trenberth, K. E. Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J. Clim. 26, 7298–7310 (2013)

    ADS  Google Scholar 

  204. Trenberth, K. E. & Fasullo, J. T. Tracking Earth’s Energy. Science 328, 316–317 (2010)

    ADS  CAS  PubMed  Google Scholar 

  205. Rhein, M. & Al, E. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 3 (Cambridge Univ. Press, 2013)

  206. Loeb, N. G. et al. Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Clim. 22, 748–766 (2009)

    ADS  Google Scholar 

  207. Liang, X. & Yu, L. Variations of the global net air–sea heat flux during the ‘hiatus’ period (2001–10). J. Clim. 29, 3647–3660 (2016)

    ADS  Google Scholar 

  208. Xie, S.-P., Kosaka, Y. & Okumura, Y. M. Distinct energy budgets for anthropogenic and natural changes during global warming hiatus. Nat. Geosci. 9, 29–33 (2016)

    ADS  CAS  Google Scholar 

  209. Cheng, L., Trenberth, K. E., Palmer, M. D., Zhu, J. & Abraham, J. P. Observed and simulated full-depth ocean heat-content changes for 1970–2005. Ocean Sci. 12, 925–935 (2016)

    ADS  Google Scholar 

  210. Church, J. A. et al. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38, L18601 (2011)

    ADS  Google Scholar 

  211. Guemas, V., Doblas-Reyes, F. J., Andreu-Burillo, I. & Asif, M. Retrospective prediction of the global warming slowdown in the past decade. Nat. Clim. Chang. 3, 649–653 (2013)

    ADS  Google Scholar 

  212. Lee, S. K. et al. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci. 8, 445–449 (2015)

    ADS  CAS  Google Scholar 

  213. Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Chang. 5, 240–245 (2015)

    ADS  Google Scholar 

  214. Trenberth, K. E., Fasullo, J. T., von Schuckmann, K. & Cheng, L. Insights into earth’s energy imbalance from multiple sources. J. Clim. 29, 7495–7505 (2016)

    ADS  Google Scholar 

  215. Dieng, H. B., Palanisamy, H., Cazenave, A., Meyssignac, B. & von Schuckmann, K. The sea level budget since 2003: inference on the deep ocean heat content. Surv. Geophys. 36, 209–229 (2015)

    ADS  Google Scholar 

  216. Dieng, H. B., Cazenave, A., von Schuckmann, K., Ablain, M. & Meyssignac, B. Sea level budget over 2005–2013: missing contributions and data errors. Ocean Sci. 11, 789–802 (2015)

    ADS  Google Scholar 

  217. Domingues, C. M. et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453, 1090–1093 (2008)

    ADS  CAS  PubMed  Google Scholar 

  218. Ishii, M. & Kimoto, M. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287–299 (2009)

    Google Scholar 

  219. von Schuckmann, K. & Le Traon, P.-Y. How well can we derive Global Ocean Indicators from Argo data? Ocean Sci. 7, 783–791 (2011)

    ADS  Google Scholar 

  220. Johnson, G. C. et al. in State of the Climate in 2012 (eds Blunden, J. & Arndt, D. S. ) Bull. Am. Meteorol. Soc. 94 (Suppl.), S50–S53 (2013)

    Google Scholar 

  221. Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010)

    ADS  Google Scholar 

  222. Nieves, V., Willis, J. K. & Patzert, W. C. Recent hiatus caused by decadal shift in Indo-Pacific heating. Science 349, 532–535 (2015)

    ADS  CAS  PubMed  Google Scholar 

  223. Katsman, C. A. & van Oldenborgh, G. J. Tracing the upper ocean’s ‘missing heat’. Geophys. Res. Lett. 38, L14610 (2011)

    ADS  Google Scholar 

  224. Liu, W., Xie, S.-P. & Lu, J. Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun. 7, 10926 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  225. Lee, T. & McPhaden, M. J. Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys. Res. Lett. 35, L01605 (2008)

    ADS  Google Scholar 

  226. Desbruyères, D. G. et al. Full-depth temperature trends in the northeastern Atlantic through the early 21st century. Geophys. Res. Lett. 41, 7971–7979 (2014)

    ADS  Google Scholar 

  227. Wijffels, S., Roemmich, D., Monselesan, D., Church, J. & Gilson, J. Ocean temperatures chronicle the ongoing warming of Earth. Nat. Clim. Chang. 6, 116–118 (2016)

    ADS  Google Scholar 

  228. McCarthy, G. D., Haigh, I. D., Hirschi, J. J.-M., Grist, J. P. & Smeed, D. A. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521, 508–510 (2015)

    ADS  CAS  PubMed  Google Scholar 

  229. Durack, P. J., Gleckler, P. J., Landerer, F. W. & Taylor, K. E. Quantifying underestimates of long-term upper-ocean warming. Nat. Clim. Chang. 4, 999–1005 (2014)

    ADS  Google Scholar 

  230. Myhre, G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 8 (Cambridge Univ. Press, 2013)

  231. Richter, I. & Xie, S.-P. Muted precipitation increase in global warming simulations: a surface evaporation perspective. J. Geophys. Res. Atmos. 113, D24118 (2008)

    ADS  Google Scholar 

  232. Simmons, A. J. et al. A reassessment of temperature variations and trends from global reanalyses and monthly surface climatological datasets. Q. J. R. Meteorol. Soc. (2016). 10.1002/qj.2949

  233. Fasullo, J. T. & Trenberth, K. E. The annual cycle of the energy budget. Part I: global mean and land-ocean exchanges. J. Clim. 21, 2297–2312 (2008)

    ADS  Google Scholar 

  234. Loeb, N. G. et al. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci. 5, 110–113 (2012)

    ADS  CAS  Google Scholar 

  235. Allan, R. P. et al. Changes in global net radiative imbalance 1985-2012. Geophys. Res. Lett. 41, 5588–5597 (2014)

    ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Cowtan for providing the HadCRUT3 datasets, M. Huber for providing the modelled forcing responses, and A. Jokimäki for help in collecting the relevant hiatus literature. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Contributions

I.M. led the writing with contributions from all authors. I.M. produced all figures except Fig. 5, which was produced by M.B.S.

Corresponding author

Correspondence to Iselin Medhaug.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Global-mean temperature trends from observations.

af, Linear temperature trends for the duration given on the y axis calculated from BEST (a), GISTEMP (b), HadCRUT4 (c), NOAA (d), Cowtan & Way (e) and HadCRUT3 (f). The starting year of the trend is indicated on the x axis. Dots indicate a trend in the individual datasets that is smaller than the long-term trend for the period 1951–2012.

Extended Data Figure 2 Global-mean temperature trends.

a, b, Global surface temperature trends of different durations from 42 CMIP5 models using all years in the piControl simulation (a) and of the observations starting in any year after 1880 using 5 observational datasets (b). The lines indicate, from bottom to top, the 5th, 25th, 50th, 75th and 95th percentiles. c, The 95th percentile of the individual CMIP5 models.

Extended Data Figure 3 Energy imbalance and ocean heat uptake.

a, Top of atmosphere (TOA) energy imbalance estimates based on satellite measurements (red shading), observations constrained by climate models (blue) and a sum of energy storage in different components of the climate system (green) for various sub-periods of the hiatus. The values are taken from refs 85, 177, 214 and 233, 234, 235. b, Ocean heat uptake (OHU) estimates for sub-periods of the hiatus for the depth range 0–700 m (yellow), 0–2,000 m (blue), >4,000 m (grey) and for the full depth range (red). The estimates are taken from refs 27, 47, 53, 85, 92, 209, 213, 214 and 217, 218, 219, 220, 221, with updated values from ref. 54. Zero imbalance is shown as the dashed black line. All values are given in W m−2 when adjusted for the total surface of Earth.

Extended Data Figure 4 Fraction of missing data in the HadCRUT4 dataset.

The colour scale shows the fraction of months for which there is missing surface temperature data in the HadCRUT4 dataset for the period 1998–2012.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medhaug, I., Stolpe, M., Fischer, E. et al. Reconciling controversies about the ‘global warming hiatus’. Nature 545, 41–47 (2017). https://doi.org/10.1038/nature22315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22315

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing