Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A global ocean inventory of anthropogenic mercury based on water column measurements

Subjects

Abstract

Mercury is a toxic, bioaccumulating trace metal whose emissions to the environment have increased significantly as a result of anthropogenic activities such as mining and fossil fuel combustion1,2. Several recent models have estimated that these emissions have increased the oceanic mercury inventory by 36–1,313 million moles since the 1500s2,3,4,5,6,7,8,9. Such predictions have remained largely untested owing to a lack of appropriate historical data and natural archives. Here we report oceanographic measurements of total dissolved mercury and related parameters from several recent expeditions to the Atlantic, Pacific, Southern and Arctic oceans. We find that deep North Atlantic waters and most intermediate waters are anomalously enriched in mercury relative to the deep waters of the South Atlantic, Southern and Pacific oceans, probably as a result of the incorporation of anthropogenic mercury. We estimate the total amount of anthropogenic mercury present in the global ocean to be 290 ± 80 million moles, with almost two-thirds residing in water shallower than a thousand metres. Our findings suggest that anthropogenic perturbations to the global mercury cycle have led to an approximately 150 per cent increase in the amount of mercury in thermocline waters and have tripled the mercury content of surface waters compared to pre-anthropogenic conditions. This information may aid our understanding of the processes and the depths at which inorganic mercury species are converted into toxic methyl mercury and subsequently bioaccumulated in marine food webs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hg and Premin distributions in the ocean.
Figure 2: The concentration of Hg and Premin in various water masses.

Similar content being viewed by others

References

  1. Fitzgerald, W. F. & Lamborg, C. H. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K. ) Vol. 9, Ch. 4, 1–47 (Pergamon, 2003)

    Google Scholar 

  2. Streets, D. G. et al. All-time releases of mercury to the atmosphere from human activities. Environ. Sci. Technol. 45, 10485–10491 (2011)

    Article  ADS  CAS  Google Scholar 

  3. Mason, R. P., Fitzgerald, W. F. & Morel, F. M. M. The biogeochemical cycling of elemental mercury—anthropogenic influences. Geochim. Cosmochim. Acta 58, 3191–3198 (1994)

    Article  ADS  CAS  Google Scholar 

  4. Lamborg, C. H., Fitzgerald, W. F., O'Donnell, J. & Torgersen, T. A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochim. Cosmochim. Acta 66, 1105–1118 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Selin, N. E. et al. Global 3-D land-ocean-atmosphere model for mercury: present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Glob. Biogeochem. Cycles 22, GB2011 (2008)

    ADS  Google Scholar 

  6. Soerensen, A. L. et al. An improved global model for air-sea exchange of mercury: high concentrations over the North Atlantic. Environ. Sci. Technol. 44, 8574–8580 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Sunderland, E. M. & Mason, R. P. Human impacts on open ocean mercury concentrations. Glob. Biogeochem. Cycles 21, GB4022 (2007)

    Article  ADS  Google Scholar 

  8. Strode, S., Jaegle, L. & Emerson, S. Vertical transport of anthropogenic mercury in the ocean. Glob. Biogeochem. Cycles 24, GB4014 (2010)

    Article  ADS  Google Scholar 

  9. Amos, H. M., Jacob, D. J., Streets, D. G. & Sunderland, E. M. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Glob. Biogeochem. Cycles 27, 410–421 (2013)

    Article  ADS  CAS  Google Scholar 

  10. Volk, T. & Hoffert, M. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. & Broecker, W. S. ) 99–110 (American Geophysical Union, 1985)

    Google Scholar 

  11. Morel, F. M. M., Milligan, A. J. & Saito, M. A. in Treatise on Geochemistry Vol. 6 The Oceans and Marine Geochemistry (ed. Elderfield, H. ) 113–143 (Elsevier, 2003)

    Book  Google Scholar 

  12. Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralization determined by nutrient data-analysis. Glob. Biogeochem. Cycles 8, 65–80 (1994)

    Article  ADS  CAS  Google Scholar 

  13. Bowman, K. L., Hammerschmidt, C. R., Lamborg, C. H. & Swarr, G. J. Mercury in the North Atlantic Ocean: the U.S. GEOTRACES zonal and meridional sections. Deep Sea Res. II (in the press)

  14. Cossa, D. et al. Mercury in the Southern Ocean. Geochim. Cosmochim. Acta 75, 4037–4052 (2011)

    Article  ADS  CAS  Google Scholar 

  15. Hammerschmidt, C. R. & Bowman, K. L. Vertical methylmercury distribution in the subtropical North Pacific. Mar. Chem. 132–133, 77–82 (2012)

    Article  Google Scholar 

  16. Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A. & Landing, W. M. Mercury sources, distribution, and bioavailability in the North Pacific Ocean: insights from data and models. Glob. Biogeochem. Cycles 23, GB2010 (2009)

    Article  ADS  Google Scholar 

  17. Gruber, N., Sarmiento, J. L. & Stocker, T. F. An improved method for detecting anthropogenic CO2 in the oceans. Glob. Biogeochem. Cycles 10, 809–837 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Sabine, C. L. et al. The oceanic sink for anthropogenic CO2 . Science 305, 367–371 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Key, R. M. et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004)

    Article  ADS  Google Scholar 

  20. Streets, D. G., Zhang, Q. & Wu, Y. Projections of global mercury emissions in 2050. Environ. Sci. Technol. 43, 2983–2988 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Pacyna, E. G. et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 44, 2487–2499 (2010)

    Article  ADS  CAS  Google Scholar 

  22. Le Quéré, C. et al. The global carbon budget 1959–2011. Earth Syst. Sci. Data Discuss. 5, 1107–1157 (2012)

    Article  ADS  Google Scholar 

  23. Mason, R. P., Rolfhus, K. R. & Fitzgerald, W. F. Mercury in the North Atlantic. Mar. Chem. 61, 37–53 (1998)

    Article  CAS  Google Scholar 

  24. Lamborg, C. H. et al. Modern and historic atmospheric mercury fluxes in both hemispheres: global and regional mercury cycling implications. Glob. Biogeochem. Cycles 16, 1104 (2002)

    Article  ADS  Google Scholar 

  25. Mason, R. P. et al. Mercury biogeochemical cycling in the ocean and policy implications. Environ. Res. 119, 101–117 (2012)

    Article  CAS  Google Scholar 

  26. Selin, N. E. Global change and mercury cycling: challenges for implementing a global mercury treaty. Environ. Toxicol. Chem. 33, 1202–1210 (2014)

    Article  CAS  Google Scholar 

  27. Jaegle, L., Zhang, Y., Thompson, L., Emerson, S. & Trossman, D. The Past 600 Years: Changing Hg Concentrations in a Global 3D Ocean Tracer Model. In 11th Int. Conf. on Mercury as a Global Pollutant (Edinburgh, 2013); abstr. M4-1000, http://www.mercury2013.com/

  28. Khatiwala, S. et al. Global ocean storage of anthropogenic carbon. Biogeosciences 10, 2169–2191 (2013)

    Article  ADS  CAS  Google Scholar 

  29. Cutter, G. A. & . Bruland, K. W. Rapid and noncontaminating sampling system for trace elements in global ocean surveys. Limnol. Oceanogr. Meth. 10, 425–436 (2012)

    Article  CAS  Google Scholar 

  30. Gill, G. A. & Fitzgerald, W. F. Picomolar mercury measurements in sea water and other materials using stannous chloride reduction and two-stage gold amalgamation with gas phase detection. Mar. Chem. 20, 227–243 (1987)

    Article  CAS  Google Scholar 

  31. Fitzgerald, W. F. & Gill, G. A. Subnanogram determination of mercury by two-stage gold amalgamation applied to atmospheric analysis. Anal. Chem. 51, 1714–1720 (1979)

    Article  CAS  Google Scholar 

  32. Lamborg, C. H. Hammerschmidt, C. R., Gill, G. A., Mason, R. P. & Gichuki, S. An intercomparison of procedures for the determination of total mercury in seawater and recommendations regarding mercury speciation during GEOTRACES cruises. Limnol. Oceanogr. Meth. 10, 90–100 (2012)

    Article  CAS  Google Scholar 

  33. Weiss, R. F. Solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res. 17, 721–735 (1970)

    CAS  Google Scholar 

  34. Hammerschmidt, C. R. & Fitzgerald, W. F. Bioaccumulation and trophic transfer of methylmercury in Long Island Sound. Arch. Environ. Contam. Toxicol. 51, 416–424 (2006)

    Article  CAS  Google Scholar 

  35. Eggimann, D. W. & Betzer, P. R. Decomposition and analysis of refractory oceanic suspended materials. Anal. Chem. 48, 886–890 (1976)

    Article  CAS  Google Scholar 

  36. Lamborg, C. H. et al. The flux of bio- and lithogenic material associated with sinking particles in the mesopelagic "twilight zone" of the northwest and North Central Pacific Ocean. Deep-Sea Res. II 55, 1540–1563 (2008)

    Article  ADS  Google Scholar 

  37. Talley, L. D. et al. North Pacific Intermediate Water in the Kuroshio Oyashio mixed water region. J. Phys. Oceanogr. 25, 475–501 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the captains and crews of all cruises, as well as: P. Morton, J. Fitzsimmons, R. Shelley, A. Aguilar-Islas, R. Bundy, P. Morris, S. Owens, K. Wang, S. Rigaud and S. Pike for sample collection during the North Atlantic GEOTRACES cruise; L. Groot, D. Weiss, P. Laan, J. de Jong, R. Middag, L. Pena, A. Hartman, J. M. Godoy, L. Gerringa, M. Boyé and J. Dérot for sample collection during the South Atlantic GEOTRACES cruise; T. Goepfert, E. Bertrand and D. Moran for sampling during the Metalloenzyme cruise; and M. Rutgers van der Loeff and B. Galfond for providing samples from the 2011 Polarstern cruise ARK-XXVI/3–TransArc to the central Arctic Ocean. We are also grateful to D. Cossa and E. Sunderland for providing digital versions of their Southern Ocean and P16 data. We also thank H. Amos, L. Jaegle, B. Jonsson, R. Mason, E. Sunderland and Y. Zhang for discussions and D. Cossa for comments. This work was supported by NSF grant numbers OCE-0825108, OCE-0825157, OCE-0927274, OCE-0928191, OCE-1031271, OCE-1132480 and OCE-1132515. We thank co-Principal Investigators R. Mason and G. Gill. L.-E.H. thanks J. E Sonke for funding Arctic Ocean observations via research grant ERC-2010-StG_20091028 to JES.

Author information

Authors and Affiliations

Authors

Contributions

C.H.L., C.R.H., K.L.B., G.J.S., D.C.O., L.-E.H., M.J.A.R. and M.A.S. participated in the GEOTRACES, Metalloenzyme cruises. C.H.L., C.R.H., K.L.B., G.J.S. and L.-E.H. performed Hg analyses. D.C.O. and P.J.L. designed the particulate sampling experiments and performed P analyses. C.H.L., C.R.H., M.J.A.R., M.A.S. and L.-E.H. designed the Hg-related experiments. C.H.L., C.R.H., K.L.B., G.J.S., K.M.M. and L.-E.H. interpreted the data. All authors contributed to manuscript preparation.

Corresponding author

Correspondence to Carl H. Lamborg.

Supplementary information

Supplementary Information

This file contains Supplementary Methods. (PDF 139 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamborg, C., Hammerschmidt, C., Bowman, K. et al. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512, 65–68 (2014). https://doi.org/10.1038/nature13563

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13563

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing