Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ediacaran life on land

Subjects

Abstract

Ediacaran (635–542 million years ago) fossils have been regarded as early animal ancestors of the Cambrian evolutionary explosion of marine invertebrate phyla1, as giant marine protists2 and as lichenized fungi3. Recent documentation of palaeosols in the Ediacara Member of the Rawnsley Quartzite of South Australia4 confirms past interpretations of lagoonal–aeolian deposition based on synsedimentary ferruginization and loessic texture5,6. Further evidence for palaeosols comes from non-marine facies, dilation cracks, soil nodules, sand crystals, stable isotopic data and mass balance geochemistry4. Here I show that the uppermost surfaces of the palaeosols have a variety of fossils in growth position, including Charniodiscus, Dickinsonia, Hallidaya, Parvancorina, Phyllozoon, Praecambridium, Rugoconites, Tribrachidium and ‘old-elephant skin’ (ichnogenus Rivularites7). These fossils were preserved as ferruginous impressions, like plant fossils8, and biological soil crusts9,10 of Phanerozoic eon sandy palaeosols. Sand crystals after gypsum11 and nodules of carbonate12 are shallow within the palaeosols4, even after correcting for burial compaction13. Periglacial involutions and modest geochemical differentiation of the palaeosols are evidence of a dry, cold temperate Ediacaran palaeoclimate in South Australia4. This new interpretation of some Ediacaran fossils as large sessile organisms of cool, dry soils, is compatible with observations that Ediacaran fossils were similar in appearance and preservation to lichens and other microbial colonies of biological soil crusts3, rather than marine animals1, or protists2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geological section of upper Ediacara Member in Brachina Gorge, South Australia.
Figure 2: Palaeosols of the Ediacara Member of the Rawnsley Quartzite, South Australia.
Figure 3: Maximum length of Dickinsonia fossils related to area (%) of gypsum in same palaeosol, as a proxy for soil development.

Similar content being viewed by others

References

  1. Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the history of animals. Science 334, 1091–1097 (2011)

    Article  CAS  ADS  Google Scholar 

  2. Seilacher, A., Buatois, L. A. & Mangano, M. G. Trace fossils in the Ediacaran–Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeogr. Palaeoclimatol. Palaeoecol. 227, 323–356 (2005)

    Article  Google Scholar 

  3. Retallack, G. J. Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil. Alcheringa 31, 215–240 (2007)

    Article  Google Scholar 

  4. Retallack, G. J. Were Ediacaran siliciclastics of South Australia coastal or deep marine? Sedimentology 59, 1208–1236 (2012)

    Article  CAS  ADS  Google Scholar 

  5. Mawson, D. & Segnit, E. R. Purple slates of the Adelaide System. Trans Roy. Soc. S. Australia 72, 276–280 (1949)

    CAS  Google Scholar 

  6. Jenkins, R. J. F., Ford, C. H. & Gehling, J. G. The Ediacara Member of the Rawnsley Quartzite: the context of the Ediacara assemblage (late Precambrian, Flinders Ranges). J. Geol. Soc. Australia 30, 101–119 (1983)

    Article  Google Scholar 

  7. Retallack, G. J. Criteria for distinguishing microbial mats and earths. Soc. Econ. Paleont. Mineral. Spec. Pap. 101, 136–152 (2012)

    Google Scholar 

  8. Retallack, G. J. & Dilcher, D. L. Core and geophysical logs versus outcrop for interpretation of Cretaceous paleosols in the Dakota Formation of Kansas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 329–330, 47–63 (2012)

    Article  Google Scholar 

  9. Retallack, G. J. Cambrian–Ordovician non-marine fossils from South Australia. Alcheringa 33, 355–391 (2009)

    Article  Google Scholar 

  10. Simpson, W. S. et al. A preserved Late Cretaceous biological soil crust in the capping sandstone member, Wahweap Formation, Grand Staircase-Escalante National Monument, Utah: paleoclimatic implications. Sedim. Geol. 230, 139–145 (2010)

    Article  ADS  Google Scholar 

  11. Retallack, G. J. & Huang, C.-M. Depth to gypsic horizon as a proxy for paleoprecipitation in paleosols of sedimentary environments. Geology 38, 403–406 (2010)

    Article  CAS  ADS  Google Scholar 

  12. Retallack, G. J. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology 33, 333–336 (2005)

    Article  CAS  ADS  Google Scholar 

  13. Sheldon, N. D. & Retallack, G. J. Equation for compaction of paleosols due to burial. Geology 29, 247–250 (2001)

    Article  ADS  Google Scholar 

  14. Sprigg, R. C. Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. Trans Roy. Soc. S. Australia 71, 212–224 (1947)

    Google Scholar 

  15. Glaessner, M. F. Precambrian animals. Sci. Am. 204, 72–78 (1961)

    Article  Google Scholar 

  16. Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M. & Vickers-Rich, P. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia (Johns Hopkins Univ. Press, 2008)

    Google Scholar 

  17. Antcliffe, J. B. & Brasier, M. D. Charnia at 50: developmental models for Ediacaran fronds. Palaeontology 51, 11–26 (2008)

    Article  Google Scholar 

  18. Huldtgren, T. et al. Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science 334, 1696–1699 (2011)

    Article  CAS  Google Scholar 

  19. Yin, Z. et al. Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng’an Biota, South China. Precambr. Res. . http://dx.doi.org/10.1016/j.precamres.2011.08.011 (9 September 2011)

  20. Yuan, X.-L., Xiao, S.-H. & Taylor, T. N. Lichen-like symbiosis 600 million years ago. Science 308, 1017–1020 (2005)

    Article  CAS  ADS  Google Scholar 

  21. Bengtson, S., Rasmussen, B. & Krapež, B. The Paleoproterozoic megascopic Stirling biota. Paleobiology 33, 351–381 (2007)

    Article  Google Scholar 

  22. Gehling, J. G., Droser, M. L., Jensen, S. R. & Runnegar, B. N. in Evolving Form and Function: Fossils and Development (ed. Briggs, D. E. G. ) 45–56 (Yale Peabody Museum, 2005)

    Google Scholar 

  23. Dan, J., Moshe, R. & Alperovich, N. The soils of Sede Zin. Israel J. Earth Sci. 22, 211–227 (1973)

    CAS  Google Scholar 

  24. Dan, J., Yaalon, D. H., Moshe, R. & Nissim, S. Evolution of reg soils in southern Israel and Sinai. Geoderma 28, 173–202 (1982)

    Article  CAS  ADS  Google Scholar 

  25. Solomina, O. & Calkin, P. E. Lichenometry as applied to moraines in Alaska, USA, and Kamchatka, Russia. Arct. Antarct. Alp. Res. 35, 129–143 (2003)

    Article  Google Scholar 

  26. Matthews, J. A. “Little Ice Age” glacier variations in Jotunheim, southern Norway: a study in regionally controlled lichenometric dating of recessional moraines, with implications for climate and lichen growth rates. Holocene 15, 1–19 (2005)

    Article  ADS  Google Scholar 

  27. Food & Agriculture Organization. Soil Map of the World Vol. VIII, North and Central Asia (United Nations Educ. Cult. Org., 1978)

  28. Jenkins, R. J. F. in The Geological Record of Neoproterozoic Glaciations (eds Arnaud, E., Halverson, G. P. and Shields-Zhou, G. ) 693–698 (Geol. Soc. London Mem., 2011)

    Google Scholar 

  29. Ewing, S. A. et al. A threshold in soil formation at Earth’s arid-hyperarid transition. Geochim. Cosmochim. Acta 70, 5293–5322 (2006)

    Article  CAS  ADS  Google Scholar 

  30. Grazhdankin, D. & Gerdes, H. Y. Ediacaran microbial colonies. Lethaia 40, 201–210 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

K. Lloyd, P. Coulthard, A. Coulthard, K. Anderson and D. Crawford facilitated permission to undertake research in Flinders Ranges National Park. B. Logan and M. Willison aided sampling of drill core at PIRSA, Glenside. T. Palmer and D. Atkins provided mathematical advice. Fieldwork was funded by the PRF fund of the American Chemical Society, and aided by C. Metzger and J. Gehling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Retallack.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, and Data, Supplementary Figures 1-7, Supplementary Tables 1-6 and Supplementary References. (PDF 1855 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Retallack, G. Ediacaran life on land. Nature 493, 89–92 (2013). https://doi.org/10.1038/nature11777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11777

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing