Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electric currents couple spatially separated biogeochemical processes in marine sediment

Abstract

Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact1,2,3,4. Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water overlying the sediment resulted in a rapid (<1-h) change in the hydrogen sulphide concentration within the sediment more than 12 mm below the oxic zone, a change explicable by transmission of electrons but not by diffusion of molecules. Mass balances indicated that more than 40% of total oxygen consumption in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined with pyrite, soluble electron shuttles and outer-membrane cytochromes. Electrical communication between distant chemical and biological processes in nature adds a new dimension to our understanding of biogeochemistry and microbial ecology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sediment O 2 , ΣH 2 S, Fe 2+ and pH microprofiles.
Figure 2: Electric currents in sediment.
Figure 3: Time series of O 2 and H 2 S distribution in the sediment during oxic–anoxic cycles.

Similar content being viewed by others

References

  1. Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P. & Woodward, J. C. Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Leang, C., Coppi, M. V. & Lovley, D. R. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 185, 2096–2103 (2003)

    Article  CAS  Google Scholar 

  4. Rabaey, K. et al. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 1, 9–18 (2007)

    Article  CAS  Google Scholar 

  5. Reimers, C. E., Tender, L. M., Fertig, S. & Wang, W. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol. 35, 192–195 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Ryckelynck, N., Stecher, H. A. & Reimers, C. E. Understanding the anodic mechanism of a seafloor fuel cell: interactions between geochemistry and microbial activity. Biogeochemistry 76, 113–139 (2005)

    Article  Google Scholar 

  7. Canfield, D. E. et al. Pathways of organic carbon oxidation in three continental margin sediments. Mar. Geol. 113, 27–40 (1993)

    Article  CAS  Google Scholar 

  8. Sayama, M., Risgaard-Petersen, N., Nielsen, L. P., Fossing, H. & Christensen, P. B. Impact of bacterial NO3 - transport on sediment biogeochemistry. Appl. Environ. Microbiol. 71, 7575–7577 (2005)

    Article  CAS  Google Scholar 

  9. Risgaard-Petersen, N. et al. Evidence for complete denitrification in a benthic foraminifer. Nature 443, 93–96 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Glud, R. N. & Fenchel, T. The importance of ciliates for interstitial solute transport in benthic communities. Mar. Ecol. Prog. Ser. 186, 87–93 (1999)

    Article  ADS  Google Scholar 

  11. Glud, R. N., Forster, S. & Huettel, M. Influence of radial pressure gradients on solute exchange in stirred benthic chambers. Mar. Ecol. Prog. Ser. 141, 303–311 (1996)

    Article  ADS  Google Scholar 

  12. Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R. & Greenwood, J. The effect of biogeochemical processes on pH. Mar. Chem. 105, 30–51 (2007)

    Article  CAS  Google Scholar 

  13. Crank, J. The Mathematics of Diffusion 1st edn, 18–19 (Clarendon, 1967)

    Google Scholar 

  14. Li, Y.-H. & Gregory, S. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38, 703–714 (1974)

    Article  ADS  CAS  Google Scholar 

  15. Ullman, W. J. & Aller, R. C. Diffusion coefficients in nearshore marine sediments. Limnol. Oceanogr. 27, 552–556 (1982)

    Article  ADS  CAS  Google Scholar 

  16. Sato, M. & Mooney, H. M. The electrochemical mechanism of sulfide self-potentials. Geophysics 25, 226–249 (1960)

    Article  ADS  CAS  Google Scholar 

  17. Bigalke, J. & Grabner, E. W. The geobattery model: a contribution to large scale electrochemistry. Electrochim. Acta 42, 3443–3452 (1997)

    Article  CAS  Google Scholar 

  18. Naudet, V. & Revil, A. A sandbox experiment to investigate bacteria-mediated redox processes on self-potential signals. Geophys. Res. Lett. 32, L11405 (2005)

    Article  ADS  Google Scholar 

  19. Ntarlagiannis, D., Atekwana, E. A., Hill, E. A. & Gorby, Y. Microbial nanowires: is the subsurface “hardwired”? Geophys. Res. Lett. 34, L17305 (2007)

    Article  ADS  Google Scholar 

  20. Corry, C. E. Spontaneous polarization associated with porphyry sulfide mineralization. Geophysics 50, 1020–1034 (1985)

    Article  ADS  Google Scholar 

  21. Leney, G. W. On: “Spontaneous polarization associated with porphyry sulfide mineralization” by C. E. Corry (GEOPHYSICS, 50, 1020–1034, June 1985). Geophysics 51, 1153–1154 (1986)

    Article  Google Scholar 

  22. Williams, K. H., Hubbard, S. S. & Banfield, J. F. Galvanic interpretation of self-potential signals associated with microbial sulfate-reduction. J. Geophys. Res. 112, G03019 (2007)

    Article  ADS  Google Scholar 

  23. Torres, C. I., Marcus, A. K., Parameswaran, P. & Rittmann, B. E. Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environ. Sci. Technol. 42, 6593–6597 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Glud, R. N. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243–289 (2008)

    Article  Google Scholar 

  25. Jeroschewski, P., Steuckart, C. & Kuhl, M. An amperometric microsensor for the determination of H2S in aquatic environments. Anal. Chem. 68, 4351–4357 (1996)

    Article  CAS  Google Scholar 

  26. Stumm, W. & Morgan, J. J. Aquatic Chemistry 2nd edn, 179–206 (Wiley, 1981)

    Google Scholar 

  27. Stookey, L. L. Ferrozine - a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970)

    Article  CAS  Google Scholar 

  28. Fossing, H. & Jorgensen, B. B. Measurement of bacterial sulfate reduction in sediments - evaluation of a single-step chromium reduction method. Biogeochemistry 8, 205–222 (1989)

    Article  CAS  Google Scholar 

  29. Tromp, T. K., VanCappellen, P. & Key, R. M. A global model for the early diagenesis of organic carbon and organic phosphorous in marine sediments. Geochim. Cosmochim. Acta 59, 1259–1284 (1995)

    Article  ADS  CAS  Google Scholar 

  30. Berg, P., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Aarhus University Research Foundation, the Danish National Research Foundation (N.R.-P.), the Max Planck Society (N.R.-P.) and the Japan Society for the Promotion of Science (M.S.).

Author Contributions The study was conceived by L.P.N. All authors contributed to the design and execution of the study, interpretation of the results and preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Peter Nielsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, L., Risgaard-Petersen, N., Fossing, H. et al. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463, 1071–1074 (2010). https://doi.org/10.1038/nature08790

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08790

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing