Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ten per cent polarized optical emission from GRB 090102

Abstract

The nature of the jets and the role of magnetic fields in gamma-ray bursts (GRBs) remains unclear1,2. In a baryon-dominated jet only weak, tangled fields generated in situ through shocks would be present3. In an alternative model, jets are threaded with large-scale magnetic fields that originate at the central engine and that accelerate and collimate the material4. To distinguish between the models the degree of polarization in early-time emission must be measured; however, previous claims of gamma-ray polarization have been controversial5,6,7,8. Here we report that the early optical emission from GRB 090102 was polarized at 10 ± 1 per cent, indicating the presence of large-scale fields originating in the expanding fireball. If the degree of polarization and its position angle were variable on timescales shorter than our 60-second exposure, then the peak polarization may have been larger than ten per cent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RINGO observation of the field of GRB 090102 observed 2009 Jan 2.
Figure 2: RINGO data for GRB 090102 and calibration sources.
Figure 3: Monte Carlo simulation using GRB090102 data.
Figure 4: Competing models of GRB magnetic field structure.

Similar content being viewed by others

References

  1. Lyutikov, M. The electromagnetic model of gamma ray bursts. N. J. Phys. 8, 119–143 (2006)

    Article  Google Scholar 

  2. Zhang, B. & Mészáros, P. Gamma-ray bursts: progress, problems and prospects. Int. J. Mod. Phys. A 19, 2385–2471 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Piran, T. Gamma ray bursts and the fireball model. Phys. Rep. 314, 575–667 (1999)

    Article  ADS  Google Scholar 

  4. Lyutikov, M. Magnetocentrifugal launching of jets from discs around Kerr black holes. Mon. Not. R. Astron. Soc. 396, 1545–1552 (2009)

    Article  ADS  Google Scholar 

  5. Coburn, W. & Boggs, S. E. Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002. Nature 423, 415–417 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Rutledge, R. E. & Fox, D. B. Re-analysis of polarization in the γ-ray flux of GRB 021206. Mon. Not. R. Astron. Soc. 350, 1288–1300 (2004)

    Article  ADS  Google Scholar 

  7. Willis, D. R. et al. Evidence of polarisation in the prompt gamma-ray emission from GRB 930131 and GRB 960924. Astron. Astrophys. 439, 245–253 (2005)

    Article  ADS  CAS  Google Scholar 

  8. McGlynn, S. et al. Polarisation studies of the prompt gamma-ray emission from GRB 041219a using the spectrometer aboard INTEGRAL. Astron. Astrophys. 466, 895–904 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Zhang, B., Kobayashi, S. & Mészáros, P. Gamma-ray burst early optical afterglows: implications for the initial Lorentz factor and the central engine. Astrophys. J. 595, 950–954 (2003)

    Article  ADS  Google Scholar 

  10. Zhang, B. & Kobayashi, S. Gamma-ray burst early afterglows: reverse shock emission from arbitrarily magnetized ejecta. Astrophys. J. 628, 315–334 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Steele, I. A. et al. RINGO: a novel ring polarimeter for rapid GRB followup. Proc. SPIE 6269, 179S (2006)

    Google Scholar 

  12. Steele, I. A. et al. performance and first results. Proc. SPIE 5489, 679–692 (2004)

    Article  ADS  Google Scholar 

  13. Mundell, C. G. et al. Early optical polarization of a gamma ray burst afterglow. Science 315, 1822–1824 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Mangano, V. et al. Swift observations of GRB 090102. GCN Rep. 192.1, (2009)

  15. Klotz, A. et al. GRB 090102: TAROT Calern Observatory optical observations. GCN Circ. 8761, (2009)

  16. Covino, S. et al. GRB 090102: REM observations of a bright afterglow. GCN Circ. 8763, (2009)

  17. Gendre, B. et al. Testing the GRB models with the strange afterglow of GRB090102. Mon. Not. R. Astron. Soc. (submitted)

  18. Gomboc, A. et al. Multiwavelength analysis of the intriguing GRB 061126: the reverse shock scenario and magnetization. Astrophys. J. 660, 489–495 (2008)

    Google Scholar 

  19. Gruzinov, A. & Waxman, E. Gamma-ray burst afterglow: polarization and analytical light curves. Astrophys. J. 511, 852–861 (1999)

    Article  ADS  Google Scholar 

  20. Gruzinov, A. Strongly polarized optical afterglows of gamma-ray bursts. Astrophys. J. 525, L29–L31 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Medvedev, M. V. & Loeb, A. Generation of magnetic fields in the relativistic shock of gamma-ray burst sources. Astrophys. J. 526, 697–706 (1999)

    Article  ADS  Google Scholar 

  22. Covino, S. et al. GRB 990510: linearly polarized radiation from a fireball. Astron. Astrophys. 348, L1–L4 (1999)

    ADS  CAS  Google Scholar 

  23. Wijers, R. A. M. et al. Detection of polarization in the afterglow of GRB 990510 with the ESO Very Large Telescope. Astrophys. J. 523, L33–L36 (1999)

    Article  ADS  Google Scholar 

  24. Lazzati, D., Rossi, E., Ghisellini, G. & Rees, M. J. Compton drag as a mechanism for very high linear polarization in gamma-ray bursts. Mon. Not. R. Astron. Soc. 347, L1–L5 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Mimica, P., Giannios, D. & Aloy, M. A. Deceleration of arbitrarily magnetized GRB ejecta: the complete evolution. Astron. Astrophys. 494, 879–890 (2009)

    Article  ADS  Google Scholar 

  26. Fan, Y. Interpretation and implications of the non-detection of GeV spectrum excess by the Fermi Gamma-ray Space Telescope in most gamma-ray bursts. Mon. Not. R. Astron. Soc. 397, 1539–1548 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Granot, J. The most probable cause for the high gamma-ray polarization in GRB 021206. Astrophys. J. 596, L17–L21 (2003)

    Article  ADS  Google Scholar 

  28. Götz, D., Laurent, P., Lebrun, F., Daigne, F. & Bošnjak, Ž. Variable polarization measured in the prompt emission of GRB 041219A using IBIS on board INTEGRAL. Astrophys. J. 695, L208–L212 (2009)

    Article  ADS  Google Scholar 

  29. Schmidt, G. D., Elston, R. & Lupie, O. L. The Hubble Space Telescope northern-hemisphere grid of stellar polarimetric standards. Astron. J. 104, 1563–1567 (1992)

    Article  ADS  Google Scholar 

  30. Clarke, D. & Neumayer, D. Experiments with a novel CCD stellar polarimeter. Astron. Astrophys. 383, 360–366 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. C.G.M. acknowledges financial support from the Royal Society and Research Councils UK. We thank J. Marchant for preparing Fig. 4 for us.

Author Contributions I.A.S. designed and built the instrument, and did data reduction and analysis. C.G.M. developed the initial scientific justification for the instrument and interpreted results. R.J.S. did data reduction and analysis. S.K. did theoretical interpretation of results. C.G. coordinated observations and identified the afterglow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Steele.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steele, I., Mundell, C., Smith, R. et al. Ten per cent polarized optical emission from GRB 090102. Nature 462, 767–769 (2009). https://doi.org/10.1038/nature08590

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08590

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing