Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The logic of chromatin architecture and remodelling at promoters

Abstract

The regulation of gene transcription involves a dynamic balance between packaging regulatory sequences into chromatin and allowing transcriptional regulators access to these sequences. Access is restricted by the nucleosomes, but these can be repositioned or ejected by enzymes known as nucleosome remodellers. In addition, the DNA sequence can impart stiffness or curvature to the DNA, thereby affecting the position of nucleosomes on the DNA, influencing particular promoter 'architectures'. Recent genome-wide studies in yeast suggest that constitutive and regulated genes have architectures that differ in terms of nucleosome position, turnover, remodelling requirements and transcriptional noise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of open and covered promoters.
Figure 2: Basic functions of chromatin remodellers in nucleosome dynamics.

Similar content being viewed by others

References

  1. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    Article  CAS  Google Scholar 

  2. Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  Google Scholar 

  3. Becker, P. B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

    Article  CAS  Google Scholar 

  4. Saha, A., Wittmeyer, J. & Cairns, B. R. Chromatin remodelling: the industrial revolution of DNA around histones. Nature Rev. Mol. Cell Biol. 7, 437–447 (2006).

    Article  CAS  Google Scholar 

  5. Lee, C. K., Shibata, Y., Rao, B., Strahl, B. D. & Lieb, J. D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nature Genet. 36, 900–905 (2004).

    Article  CAS  Google Scholar 

  6. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nature Genet. 39, 1235–1244 (2007).

    Article  CAS  Google Scholar 

  7. Yuan, G. C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae . Science 309, 626–630 (2005). This paper provides the first high-resolution view of nucleosome positioning and reveals a nucleosome-depleted region that overlaps with transcription-factor binding sites.

    Article  ADS  CAS  Google Scholar 

  8. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  Google Scholar 

  9. Bernstein, B. E., Liu, C. L., Humphrey, E. L., Perlstein, E. O. & Schreiber, S. L. Global nucleosome occupancy in yeast. Genome Biol. 5, R62 (2004).

    Article  Google Scholar 

  10. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  ADS  CAS  Google Scholar 

  11. Mavrich, T. N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

    Article  ADS  CAS  Google Scholar 

  12. Venters, B. J. & Pugh, B. F. A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res. 19, 360–371 (2009).

    Article  CAS  Google Scholar 

  13. Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    Article  CAS  Google Scholar 

  14. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006). This influential paper provides computational prediction of nucleosome positions.

    Article  ADS  CAS  Google Scholar 

  15. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

    Article  ADS  CAS  Google Scholar 

  16. Segal, E. & Widom, J. Poly(dA:dT) tracts: major determinants of nucleosome organization. Curr. Opin. Struct. Biol. 19, 65–71 (2009).

    Article  CAS  Google Scholar 

  17. Ioshikhes, I. P., Albert, I., Zanton, S. J. & Pugh, B. F. Nucleosome positions predicted through comparative genomics. Nature Genet. 38, 1210–1215 (2006).

    Article  CAS  Google Scholar 

  18. Tirosh, I. & Barkai, N. Two strategies for gene regulation by promoter nucleosomes. Genome Res. 18, 1084–1091 (2008). Several concepts in promoter classification developed in this paper are central to my Review.

    Article  CAS  Google Scholar 

  19. Field, Y. et al. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput. Biol. 4, e1000216 (2008).

    Article  Google Scholar 

  20. Guillemette, B. et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol. 3, e384 (2005).

    Article  Google Scholar 

  21. Raisner, R. M. et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123, 233–248 (2005).

    Article  CAS  Google Scholar 

  22. Zhang, H., Roberts, D. N. & Cairns, B. R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123, 219–231 (2005).

    Article  CAS  Google Scholar 

  23. Struhl, K. Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc. Natl Acad. Sci. USA 82, 8419–8423 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Lowary, P. T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  Google Scholar 

  25. Mavrich, T. N. et al. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res. 18, 1073–1083 (2008).

    Article  CAS  Google Scholar 

  26. Almer, A., Rudolph, H., Hinnen, A. & Horz, W. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5, 2689–2696 (1986).

    Article  CAS  Google Scholar 

  27. Fascher, K. D., Schmitz, J. & Horz, W. Role of trans-activating proteins in the generation of active chromatin at the PHO5 promoter in S. cerevisiae . EMBO J. 9, 2523–2528 (1990).

    Article  CAS  Google Scholar 

  28. Lam, F. H., Steger, D. J. & O'Shea, E. K. Chromatin decouples promoter threshold from dynamic range. Nature 453, 246–250 (2008).

    Article  ADS  CAS  Google Scholar 

  29. Hebbar, P. B. & Archer, T. K. Chromatin remodeling by nuclear receptors. Chromosoma 111, 495–504 (2003).

    Article  Google Scholar 

  30. Basehoar, A. D., Zanton, S. J. & Pugh, B. F. Identification and distinct regulation of yeast TATA box-containing genes. Cell 116, 699–709 (2004).

    Article  CAS  Google Scholar 

  31. Huisinga, K. L. & Pugh, B. F. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae . Mol. Cell 13, 573–585 (2004).

    Article  CAS  Google Scholar 

  32. Martinez-Campa, C. et al. Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1. Mol. Cell 15, 69–81 (2004).

    Article  CAS  Google Scholar 

  33. Grant, P. A., Sterner, D. E., Duggan, L. J., Workman, J. L. & Berger, S. L. The SAGA unfolds: convergence of transcription regulators in chromatin-modifying complexes. Trends Cell Biol. 8, 193–197 (1998).

    Article  CAS  Google Scholar 

  34. Kingston, R. E. & Narlikar, G. J. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 13, 2339–2352 (1999).

    Article  CAS  Google Scholar 

  35. Owen-Hughes, T. Colworth memorial lecture. Pathways for remodelling chromatin. Biochem Soc. Trans. 31, 893–905 (2003).

    Article  CAS  Google Scholar 

  36. Langst, G., Bonte, E. J., Corona, D. F. & Becker, P. B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843–852 (1999).

    Article  CAS  Google Scholar 

  37. Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R. & Kadonaga, J. T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).

    Article  CAS  Google Scholar 

  38. Whitehouse, I. et al. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature 400, 784–787 (1999).

    Article  ADS  CAS  Google Scholar 

  39. Lorch, Y., Zhang, M. & Kornberg, R. D. Histone octamer transfer by a chromatin-remodeling complex. Cell 96, 389–392 (1999). This paper shows that a chromatin remodeller can eject a nucleosome.

    Article  CAS  Google Scholar 

  40. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004). This paper provides the first evidence for in vitro insertion of H2A.Z by a remodeller.

    Article  ADS  CAS  Google Scholar 

  41. Corona, D. F., Clapier, C. R., Becker, P. B. & Tamkun, J. W. Modulation of ISWI function by site-specific histone acetylation. EMBO Rep. 3, 242–247 (2002).

    Article  CAS  Google Scholar 

  42. Kagalwala, M. N., Glaus, B. J., Dang, W., Zofall, M. & Bartholomew, B. Topography of the ISW2–nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23, 2092–2104 (2004).

    Article  CAS  Google Scholar 

  43. Gelbart, M. E., Bachman, N., Delrow, J., Boeke, J. D. & Tsukiyama, T. Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant. Genes Dev. 19, 942–954 (2005).

    Article  CAS  Google Scholar 

  44. Whitehouse, I., Rando, O. J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 1031–1035 (2007).

    Article  ADS  CAS  Google Scholar 

  45. Whitehouse, I. & Tsukiyama, T. Antagonistic forces that position nucleosomes in vivo . Nature Struct. Mol. Biol. 13, 633–640 (2006).

    Article  CAS  Google Scholar 

  46. Parnell, T. J., Huff, J. T. & Cairns, B. R. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 27, 100–110 (2008).

    Article  CAS  Google Scholar 

  47. Badis, G. et al. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol. Cell 32, 878–887 (2008).

    Article  CAS  Google Scholar 

  48. Hartley, P. D. & Madhani, H. D. Mechanisms that specify promoter nucleosomes and identity. Cell 137, 445–458 (2009).

    Article  CAS  Google Scholar 

  49. Henikoff, S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nature Rev. Genet. 9, 15–26 (2008).

    Article  CAS  Google Scholar 

  50. Keogh, M. C. et al. The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4. Genes Dev. 20, 660–665 (2006).

    Article  CAS  Google Scholar 

  51. Millar, C. B., Xu, F., Zhang, K. & Grunstein, M. Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev. 20, 711–722 (2006).

    Article  CAS  Google Scholar 

  52. Jin, C. & Felsenfeld, G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev. 21, 1519–1529 (2007).

    Article  CAS  Google Scholar 

  53. Ahmad, K. & Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 1191–1200 (2002).

    Article  CAS  Google Scholar 

  54. Raser, J. M. & O'Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004). This important paper connects chromatin attributes to transcriptional noise.

    Article  ADS  CAS  Google Scholar 

  55. Raser, J. M. & O'Shea, E. K. Noise in gene expression: origins, consequences, and control. Science 309, 2010–2013 (2005).

    Article  ADS  CAS  Google Scholar 

  56. Kaplan, C. D., Laprade, L. & Winston, F. Transcription elongation factors repress transcription initiation from cryptic sites. Science 301, 1096–1099 (2003).

    Article  ADS  CAS  Google Scholar 

  57. Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    Article  CAS  Google Scholar 

  58. Kornberg, R. D. & Stryer, L. Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res. 16, 6677–6690 (1988).

    Article  CAS  Google Scholar 

  59. Core, L. J. & Lis, J. T. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science 319, 1791–1792 (2008).

    Article  ADS  CAS  Google Scholar 

  60. Jiang, C. & Pugh, B. F. Nucleosome positioning and gene regulation: advances through genomics. Nature Rev. Genet. 10, 161–172 (2009).

    Article  CAS  Google Scholar 

  61. Dion, M. F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405–1408 (2007).

    Article  ADS  CAS  Google Scholar 

  62. Rufiange, A., Jacques, P. E., Bhat, W., Robert, F. & Nourani, A. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol. Cell 27, 393–405 (2007).

    Article  CAS  Google Scholar 

  63. Adkins, M. W., Howar, S. R. & Tyler, J. K. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol. Cell 14, 657–666 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank T. Parnell and C. Clapier for comments and assistance with figures. I am grateful for support from the US National Institutes of Health (grant GM60415) and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints. The author declares no competing financial interests. Correspondence should be addressed to B.R.C. (brad.cairns@hci.utah.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cairns, B. The logic of chromatin architecture and remodelling at promoters. Nature 461, 193–198 (2009). https://doi.org/10.1038/nature08450

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08450

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing