Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of a malaria resistance gene in wild primates

Abstract

The ecology, behaviour and genetics of our closest living relatives, the nonhuman primates, should help us to understand the evolution of our own lineage. Although a large amount of data has been amassed on primate ecology and behaviour, much less is known about the functional and evolutionary genetic aspects of primate biology, especially in wild primates. As a result, even in well-studied populations in which nongenetic factors that influence adaptively important characteristics have been identified, we have almost no understanding of the underlying genetic basis for such traits. Here, we report on the functional consequences of genetic variation at the malaria-related FY (DARC) gene in a well-studied population of yellow baboons (Papio cynocephalus) living in Amboseli National Park in Kenya. FY codes for a chemokine receptor normally expressed on the erythrocyte surface that is the known entry point for the malarial parasite Plasmodium vivax1,2,3. We identified variation in the cis-regulatory region of the baboon FY gene that was associated with phenotypic variation in susceptibility to Hepatocystis, a malaria-like pathogen that is common in baboons4,5. Genetic variation in this region also influenced gene expression in vivo in wild individuals, a result we confirmed using in vitro reporter gene assays. The patterns of genetic variation in and around this locus were also suggestive of non-neutral evolution, raising the possibility that the evolution of the FY cis-regulatory region in baboons has exhibited both mechanistic and selective parallels with the homologous region in humans6,7,8. Together, our results represent the first reported association and functional characterization linking genetic variation and a complex trait in a natural population of nonhuman primates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the baboon FY gene (not to scale).
Figure 2: Genotype at the FY cis -regulatory A/G SNP is associated with Hepatocystis infection.
Figure 3: Allelic imbalance is associated with FY cis -regulatory genotype.
Figure 4: FY cis -regulatory variation drives differential expression in vitro.

Similar content being viewed by others

Accession codes

Data deposits

Sequence data have been deposited in NCBI GenBank under the accession numbers FJ952954–FJ955880, FJ955882–FJ955885, FJ955887–FJ955896 and FJ955899–FJ956699.

References

  1. Barnwell, J. W., Nichols, M. E. & Rubinstein, P. In vitro evaluation of the role of the Duffy blood group in erythrocyte invasion by Plasmodium vivax. J. Exp. Med. 169, 1795–1802 (1989)

    Article  CAS  Google Scholar 

  2. Miller, L. H., Mason, S. J., Clyde, D. F. & Mcginniss, M. H. Resistance factor to Plasmodium vivax in blacks—Duffy blood group genotype Fyfy. New Engl. J. Med. 295, 302–304 (1976)

    Article  CAS  Google Scholar 

  3. Miller, L. H., Mason, S. J., Dvorak, J. A., Mcginniss, M. H. & Rothman, I. K. Erythrocyte receptors for Plasmodium knowlesi malaria—Duffy blood group determinants. Science 189, 561–563 (1975)

    Article  ADS  CAS  Google Scholar 

  4. Garnham, P. C. C. Malaria Parasites and Other Haemosporidia (Blackwell, 1966)

    Google Scholar 

  5. Myers, B. J. & Kuntz, R. E. A checklist of parasites reported for the baboon. Primates 6, 137–194 (1965)

    Article  Google Scholar 

  6. Hamblin, M. T. & Di Rienzo, A. Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am. J. Hum. Genet. 66, 1669–1679 (2000)

    Article  CAS  Google Scholar 

  7. Hamblin, M. T., Thompson, E. E. & Di Rienzo, A. Complex signatures of natural selection at the Duffy blood group locus. Am. J. Hum. Genet. 70, 369–383 (2002)

    Article  Google Scholar 

  8. Sabeti, P. C. et al. Positive natural selection in the human lineage. Science 312, 1614–1620 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Tournamille, C., Colin, Y., Cartron, J. P. & Levankim, C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy negative individuals. Nature Genet. 10, 224–228 (1995)

    Article  CAS  Google Scholar 

  10. Michon, P. et al. Duffy-null promoter heterozygosity reduces DARC expression and abrogates adhesion of the P. vivax ligand required for blood-stage infection. FEBS Lett. 495, 111–114 (2001)

    Article  CAS  Google Scholar 

  11. Zimmerman, P. A. et al. Emergence of FY*A(null) in a Plasmodium vivax-endemic region of Papua New Guinea. Proc. Natl Acad. Sci. USA 96, 13973–13977 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Alberts, S. C., Buchan, J. C. & Altmann, J. Sexual selection in wild baboons: from mating opportunities to paternity success. Anim. Behav. 72, 1177–1196 (2006)

    Article  Google Scholar 

  13. Buchan, J. C., Alberts, S. C., Silk, J. B. & Altmann, J. True paternal care in a multi-male primate society. Nature 425, 179–181 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Tung, J., Charpentier, M. J. E., Garfield, D. A., Altmann, J. & Alberts, S. C. Genetic evidence reveals temporal change in hybridization patterns in a wild baboon population. Mol. Ecol. 17, 1998–2011 (2008)

    Article  CAS  Google Scholar 

  15. Perkins, S. L. & Schall, J. J. A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J. Parasitol. 88, 972–978 (2002)

    Article  CAS  Google Scholar 

  16. Garnham, P. C. C., Heisch, R. B., Minter, D. M., Phipps, J. D. & Ikata, M. Culicoides adersi Ingram and Macfie, 1923, a presumed vector of Hepatocystis ( = Plasmodium) kochi (Laveran, 1899). Nature 190, 739–741 (1961)

    Article  ADS  Google Scholar 

  17. Wittkopp, P., Haerum, B. & Clark, A. Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Yan, H., Yuan, W., Velculescu, V. E., Vogelstein, B. & Kinzler, K. W. Allelic variation in human gene expression. Science 297, 1143 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Reich, D. et al. Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet. 5, e1000360 (2009)

    Article  Google Scholar 

  20. Loisel, D. A., Rockman, M. V., Wray, G. A., Altmann, J. & Alberts, S. C. Ancient polymorphism and functional variation in the primate MHC-DQA1 5' cis-regulatory region. Proc. Natl Acad. Sci. USA 103, 16331–16336 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Wooding, S. et al. Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature 440, 930–934 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Loisel, D. Evolutionary Genetics of Immune System Genes in a Wild Primate Population. PhD thesis, Duke Univ. (2007)

    Google Scholar 

  23. Seixas, S., Ferrand, N. & Rocha, J. Microsatellite variation and evolution of the human Duffy blood group polymorphism. Mol. Biol. Evol. 19, 1802–1806 (2002)

    Article  CAS  Google Scholar 

  24. Moore, J. A. & Kuntz, R. E. Entopolyploides macaci Mayer, 1934 in the African baboon (Papio cynocephalus L. 1766). J. Med. Primatol. 4, 1–7 (1975)

    Article  CAS  Google Scholar 

  25. Brem, R. B., Storey, J. D., Whittle, J. & Kruglyak, L. Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 436, 701–703 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Smith, E. N. & Kruglyak, L. Gene-environment interaction in yeast gene expression. PLoS Biol. 6, e83 (2008)

    Article  Google Scholar 

  27. Rozas, J., Sanchez-Del Barrio, J. C., Messeguer, X., Rozas, R. & Dna, S. P. DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497 (2003)

    Article  CAS  Google Scholar 

  28. Altmann, J. et al. Behavior predicts genetic structure in a wild primate group. Proc. Natl Acad. Sci. USA 93, 5797–5801 (1996)

    Article  ADS  CAS  Google Scholar 

  29. Stephens, M., Smith, N. J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001)

    Article  CAS  Google Scholar 

  30. Excoffier, L., Laval, G. & Schneider, S. Arlequin version 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Office of the President of the Republic of Kenya and the Kenya Wildlife Service for permission to work in Amboseli National Park, and the Institute of Primate Research for local sponsorship. We thank the wardens and staff of Amboseli National Park, and the pastoral communities of Amboseli and Longido for cooperation. We thank J. Altmann for providing access to long-term data and contributing samples, and J. Altmann and Y. Gilad for providing comments on the manuscript. R. S. Mututua, S. Sayialel, and J. K. Warutere assisted with sample collection. The Integrated Primate Biomaterials and Information Resource, the Coriell Institute, J. Rogers and R. Sapolsky provided access to DNA samples from Mikumi and Masai Mara respectively. G. Gibson, T. F. C. Mackay, L. Goering and D. Tan provided access to a pyrosequencer at NC State University. M. Akinyi assisted with sample collection and analysis. A. D. Pfefferle assisted with sequencing. S. Mukherjee advised and assisted with statistical tests. Financial support came from the National Science Foundation (to S.C.A. and J.T.); the American Society of Primatologists (to J.T.); Duke University and the Duke chapter of Sigma Xi (to J.T.); and the Duke Institute for Genome Sciences and Policy (to G.A.W.).

Author Contributions J.T., S.C.A. and G.A.W. designed the study, analysed the results, and wrote the paper. J.T. and S.C.A. collected blood samples; S.C.A. provided the long-term data on Amboseli National Park. J.T. gathered the allelic imbalance and sequence data; A.P., T.F.S. and J.T. collected the transfection assay data; T.F.S. and J.T. collected the genotyping data; A.J.B. and J.T. collected the Hepatocystis data. G.A.W. and S.C.A. provided funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Tung.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-4 with Legends, Supplementary Methods, Supplementary Tables 1-4 and Supplementary References. (PDF 641 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tung, J., Primus, A., Bouley, A. et al. Evolution of a malaria resistance gene in wild primates. Nature 460, 388–391 (2009). https://doi.org/10.1038/nature08149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08149

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing