Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

Biophysical dissection of membrane proteins

Abstract

The first atomic-resolution structure of a membrane protein was solved in 1985. Twenty-four years and more than 180 unique structures later, what have we have learned? An examination of the atomic details of several diverse membrane proteins reveals some remarkable biophysical features and suggests that we can expect to achieve much more in the decades to come.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progress in determining membrane protein structures.

References

  1. Henderson, R. & Unwin, P. N. T. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28–32 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318, 618–624 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Maddy, A. H. & Malcolm, B. R. Protein conformations in the plasma membrane. Science 150, 1616–1618 (1965).

    Article  ADS  CAS  Google Scholar 

  4. Lenard, J. & Singer, S. J. Protein conformation in cell membrane preparations as studied by optical rotatory dispersion and circular dichroism. Proc. Natl Acad. Sci. USA 56, 1828–1835 (1966).

    Article  ADS  CAS  Google Scholar 

  5. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii . Nature 431, 811–818 (2004).

    Article  ADS  CAS  Google Scholar 

  6. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporter. Nature 437, 203–205 (2005).

    Article  Google Scholar 

  7. Mitchell, P. A general theory of membrane transport from studies of bacteria. Nature 180, 134–136 (1957).

    Article  ADS  CAS  Google Scholar 

  8. Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/Sugar symport. Science 321, 810–814 (2008).

    Article  ADS  CAS  Google Scholar 

  9. Weyand, S. et al. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322, 709–713 (2008).

    Article  ADS  CAS  Google Scholar 

  10. Lagerströ, M. C. & Schiöth, H. B. Structural diversity of G-protein-coupled receptors and significance for drug discovery. Nature Rev. Drug Discov. 7, 339–357 (2008).

    Article  Google Scholar 

  11. Pardo, L., Ballesteros, J. A., Osman, R. & Weinstein, H. On the use of the transmembrane domain of bacteriorhodopsin as a template for modeling the three-dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors. Proc. Natl Acad. Sci. USA 89, 4009–4012 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Palczewski, K. et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  ADS  CAS  Google Scholar 

  13. Oliveira, L., Hulsen, D., Hulsik, D. J., Paiva, A. C. M. & Vriend, G. Heavier-than-air flying machines are impossible. FEBS Lett. 564, 269–273 (2004).

    Article  CAS  Google Scholar 

  14. Rasmussen, S. G. F. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–388 (2007).

    Article  ADS  CAS  Google Scholar 

  15. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    Article  ADS  CAS  Google Scholar 

  16. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  ADS  CAS  Google Scholar 

  17. Warne, T. et al. Structure of a β-adrenergic G-protein-coupled receptor. Nature 454, 486–492 (2008).

    Article  ADS  CAS  Google Scholar 

  18. Jaakola, V.-P. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217 (2008).

    Article  ADS  CAS  Google Scholar 

  19. Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H.-W. & Ernst, O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183–188 (2008).

    Article  ADS  CAS  Google Scholar 

  20. Murakami, M. & Kouyama, T. Crystal structure of squid rhodopsin. Nature 453, 363–368 (2008).

    Article  ADS  CAS  Google Scholar 

  21. Hanson, M. A. & Stevens, R. C. Discovery of new GPCR biology: One receptor structure at a time. Structure 17, 8–14 (2009).

    Article  CAS  Google Scholar 

  22. Kahn, T. W. & Engelman, D. M. Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment. Biochemistry 31, 6144–6151 (1992).

    Article  CAS  Google Scholar 

  23. Boyer, P. D. The ATP synthase: A splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    Article  CAS  Google Scholar 

  24. Stock, D., Leslie, A. G. W. & Walker, J. E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999).

    Article  CAS  Google Scholar 

  25. Koepke, J., Hu, X. C., Muenke, C., Schulten, K. & Michel, H. The crystal structure of the light-harvesting complex II (B800- 850) from Rhodospirillum molischianum . Structure 4, 581–597 (1996).

    Article  CAS  Google Scholar 

  26. McDermott, G. et al. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517–521 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Weber, J. & Senior, A. E. ATP synthesis driven by proton transport in F1FO-ATP synthase. FEBS Lett. 545, 61–70 (2003).

    Article  CAS  Google Scholar 

  28. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Jr Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    Article  ADS  CAS  Google Scholar 

  29. Sakai, J. et al. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 85, 1037–1046 (1996).

    Article  CAS  Google Scholar 

  30. Rawson, R. B. et al. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1, 47–57 (1997).

    Article  CAS  Google Scholar 

  31. Feng, L. et al. Structure of a site-2 protease family intramembrane metalloprotease. Science 318, 1608–1612 (2007).

    Article  ADS  CAS  Google Scholar 

  32. Wang, Y., Zhang, Y. & Ha, Y. Crystal structure of a rhomboid family intramembrane protease. Nature 444, 179–183 (2006).

    Article  ADS  CAS  Google Scholar 

  33. Wu, Z. et al. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nature Struct. Mol. Biol. 13, 1084–1091 (2006).

    Article  CAS  Google Scholar 

  34. Ben-Shem, A., Fass, D. & Bibi, E. Structural basis for intramembrane proteolysis by rhomboid serine proteases. Proc. Natl Acad. Sci. USA 104, 462–466 (2007).

    Article  ADS  CAS  Google Scholar 

  35. Lemieux, M. J., Fischer, S. J., Cherney, M. M., Bateman, K. S. & James, M. N. G. The crystal structure of the rhomboid peptidase from Haemophilus influenzae provides insight into intramembrane proteolysis. Proc. Natl Acad. Sci. USA 104, 750–754 (2007).

    Article  ADS  CAS  Google Scholar 

  36. Bondar, A.-N., del Val, C. & White, S. H. Rhomboid protease dynamics and lipid interactions. Structure 17, 395–405 (2009).

    Article  CAS  Google Scholar 

  37. Lindahl, E. & Sansom, M. S. P. Membrane proteins: molecular dynamics simulations. Curr. Opin. Struct. Biol. 18, 425–431 (2008).

    Article  CAS  Google Scholar 

  38. Engelman, D. M. Membranes are more mosaic than fluid. Nature 438, 578–580 (2005).

    Article  ADS  CAS  Google Scholar 

  39. Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421 (1996).

    Article  CAS  Google Scholar 

  40. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P. & Landau, E. M. X-ray structure of bacteriorhodopsin at 2.5 Å from microcrystals grown in lipidic cubic phases. Science 277, 1676–1681 (1997).

    Article  CAS  Google Scholar 

  41. Buchanan, S. K. β-Barrel proteins from bacterial outer membranes: Structure, function and refolding. Curr. Opin. Struct. Biol. 9, 455–461 (1999).

    Article  CAS  Google Scholar 

  42. Schulz, G. E. β-Barrel membrane proteins. Curr. Opin. Struct. Biol. 10, 443–447 (2000).

    Article  CAS  Google Scholar 

  43. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli . Science 301, 610–615 (2003).

    Article  ADS  CAS  Google Scholar 

  44. Pebay-Peyroula, E. et al. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426, 39–44 (2003).

    Article  ADS  CAS  Google Scholar 

  45. Doyle, D. A. et al. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  ADS  CAS  Google Scholar 

  46. von Heijne, G. Membrane-protein topology. Nature Rev. Mol. Cell Biol. 7, 909–918 (2006).

    Article  CAS  Google Scholar 

  47. Schuldiner, S. EmrE, a model for studying evolution and mechanism of ion-coupled transporters. Biochim. Biophys. Acta 1794, 748–762 (2009).

    Article  CAS  Google Scholar 

  48. Rapp, M., Seppälä, S., Granseth, E. & von Heijne, G. Emulating membrane protein evolution by rational design. Science 315, 1282–1284 (2007).

    Article  ADS  CAS  Google Scholar 

  49. Swartz, K. J. Sensing voltage across lipid membranes. Nature 456, 891–897 (2008).

    Article  ADS  CAS  Google Scholar 

  50. Oberai, A., Ihm, Y., Kim, S. & Bowie, J. U. A limited universe of membrane protein families and folds. Protein Sci. 15, 1723–1734 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institute of General Medical Science and the National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints..

Correspondence should be addressed to the author (stephen.white@uci.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, S. Biophysical dissection of membrane proteins. Nature 459, 344–346 (2009). https://doi.org/10.1038/nature08142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing