Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Darwin's bridge between microevolution and macroevolution

Abstract

Evolutionary biologists have long sought to understand the relationship between microevolution (adaptation), which can be observed both in nature and in the laboratory, and macroevolution (speciation and the origin of the divisions of the taxonomic hierarchy above the species level, and the development of complex organs), which cannot be witnessed because it occurs over intervals that far exceed the human lifespan. The connection between these processes is also a major source of conflict between science and religious belief. Biologists often forget that Charles Darwin offered a way of resolving this issue, and his proposal is ripe for re-evaluation in the light of recent research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Darwin's view of the link between microevolution and macroevolution.
Figure 2: A plot of lineage through time.

References

  1. Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859). This book is essential reading for those who wish not only to understand evolution in general but also to see the wealth of Darwin's original ideas that have yet to be tested.

    Google Scholar 

  2. Wallace, A. R. On the tendency of varieties to depart indefinitely from the original type. J. Proc. Linn. Soc. (Zool.) 3, 53–62 (1858).

    Google Scholar 

  3. Rudwick, M. J. S. Bursting the Limits of Time (Univ. Chicago Press, 2005). This book provides the best explanation for how it became evident that fossils represent the history of life and how the geological timescale was developed.

    Google Scholar 

  4. Mayr, E. Reasons for the failure of theories. Phil. Sci. 61, 529–533 (1994).

    Google Scholar 

  5. Mayr, E. Systematics and the Origin of Species (Columbia Univ. Press, 1942).

    Google Scholar 

  6. Dobzhansky, T. Genetics and the Origin of Species (Columbia Univ. Press, 1937).

    Google Scholar 

  7. MacArthur, R. H. Geographical Ecology (Princeton Univ. Press, 1972).

    Google Scholar 

  8. MacArthur, R. H. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–386 (1967).

    Google Scholar 

  9. Vandermeer, J. H. Niche theory. Annu. Rev. Ecol. Syst. 3, 107–132 (1972).

    Google Scholar 

  10. Chase, J. M. & Leibold, M. A. Ecological Niches. Linking Classical and Contemporary Approaches (Univ. Chicago Press, 2003).

    Google Scholar 

  11. Brown, W. L. & Wilson, E. O. Character displacement. Syst. Zool. 5, 49–65 (1956). This paper is a benchmark in the birth of evolutionary ecology and the first formal restatement of Darwin's principle of divergence.

    Google Scholar 

  12. Lack, D. Darwin's Finches (Cambridge Univ. Press, 1947).

    Google Scholar 

  13. Grant, P. R. Convergent and divergent character displacement. Biol. J. Linn. Soc. 4, 39–68 (1972).

    Google Scholar 

  14. Losos, J. B. A phylogenetic analysis of character displacement in the Caribbean Anolis lizards. Evolution 44, 558–569 (1990).

    PubMed  Google Scholar 

  15. Schluter, D. & McPhail, J. D. Ecological character displacement and speciation in sticklebacks. Am. Nat. 140, 85–108 (1992).

    CAS  PubMed  Google Scholar 

  16. Losos, J. B. Ecological character displacement and the study of adaptation. Proc. Natl Acad. Sci. USA 97, 5693–5695 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Simpson, G. G. The Major Features of Evolution (Columbia Univ. Press, 1953).

    Google Scholar 

  18. Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000). In this paper, Schluter updates Simpson's concept of adaptive radiation and integrates it with the modern evidence for such radiations.

    Google Scholar 

  19. Harvey, P. H., May, R. M. & Nee, S. Phylogenies without fossils. Evolution 48, 523–529 (1994).

    PubMed  Google Scholar 

  20. Raup, D. M., Gould, S. J., Schopf, T. J. M. & Simberloff, D. S. Stochastic models of phylogeny and evolution of diversity. J. Geol. 81, 525–542 (1973).

    ADS  Google Scholar 

  21. Nee, S., Mooers, A. O. & Harvey, P. H. Tempo and mode of evolution revealed from molecular phylogenies. Proc. Natl Acad. Sci. USA 89, 8322–8326 (1992).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Phil. Trans. R. Soc. Lond. B 344, 305–311 (1994).

    ADS  CAS  Google Scholar 

  23. Pybus, O. G. & Harvey, P. H. Testing macro-evolutionary models using incomplete molecular phylogenies. Proc. R. Soc. Lond. B 267, 2267–2272 (2000).

    CAS  Google Scholar 

  24. Nee, S. Birth–death models in macroevolution. Annu. Rev. Ecol. Syst. 37, 1–17 (2006).

    Google Scholar 

  25. Harvey, P. H., Holmes, E. C. & Nee, S. Model phylogenies to explain the real world. Bioessays 16, 767–770 (1994).

    CAS  PubMed  Google Scholar 

  26. Ricklefs, R. E. Estimating diversification rates from phylogenetic information. Trends Ecol. Evol. 22, 601–610 (2007).

    PubMed  Google Scholar 

  27. Ricklefs, R. E. in Speciation and Patterns of Diversity (eds Butlin, R., Bridle, J. & Schluter, D.) 257–277 (Cambridge Univ. Press, 2009).

    Google Scholar 

  28. Ricklefs, R. E. Evolutionary diversification and the origin of the diversity–environment relationship. Ecology 87, S3–S13 (2006).

    PubMed  Google Scholar 

  29. Phillimore, A. B. & Price, T. D. Density-dependent cladogenesis in birds. PLoS Biol. 6, 483–489 (2008).

    CAS  Google Scholar 

  30. Rabosky, D. L. & Lovette, I. J. Density-dependent diversification in North American wood warblers. Proc. R. Soc. Lond. B 275, 2363–2371 (2008).

    Google Scholar 

  31. Stanley, S. M. Macroevolution, Pattern and Process (Freeman, 1979).

    Google Scholar 

  32. Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology, and species richness. Trends Ecol. Evol. 19, 639–644 (2004).

    PubMed  Google Scholar 

  33. Ricklefs, R. E., Schwarzbach, A. E. & Renner, S. S. Rate of lineage origin explains the diversity anomaly in the world's mangrove vegetation. Am. Nat. 168, 805–810 (2006).

    PubMed  Google Scholar 

  34. Latham, R. E. & Ricklefs, R. E. Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos 67, 325–333 (1993).

    Google Scholar 

  35. Judd, W. S., Sanders, R. W. & Donoghue, M. J. Angiosperm family pairs: preliminary phylogenetic analyses. Harv. Pap. Bot. 5, 1–51 (1994).

    Google Scholar 

  36. Ricklefs, R. E. in Tropical Rainforests: Past, Present, and Future (eds Bermingham, E., Dick, C. W. & Moritz, C.) 16–40 (Univ. Chicago Press, 2005).

    Google Scholar 

  37. Rabosky, D. L., Donnellan, S. C., Talaba, A. L. & Lovette, I. J. Exceptional among-lineage variation in diversification rates during the radiation of Australia's most diverse vertebrate clade. Proc. R. Soc. B 274, 2915–2923 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Barraclough, T. G., Vogler, A. P. & Harvey, P. H. Revealing the factors that promote speciation. Phil. Trans. R. Soc. Lond. B 353, 241–249 (1998).

    Google Scholar 

  39. Freeman, P. W. Macroevolution in Microchiroptera: recoupling morphology and ecology with phylogeny. Evol. Ecol. Res. 2, 317–335 (2000).

    Google Scholar 

  40. Ricklefs, R. E. Global diversification rates of passerine birds. Proc. R. Soc. Lond. B 270, 2285–2291 (2003).

    Google Scholar 

  41. Ricklefs, R. E. Small clades at the periphery of passerine morphological space. Am. Nat. 165, 651–659 (2005).

    PubMed  Google Scholar 

  42. Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982).

    ADS  CAS  PubMed  Google Scholar 

  43. Raup, D. M. A kill curve for Phanerozoic marine species. Paleobiology 17, 37–48 (1991). Reference 42 presents the discovery of the most dramatic mass extinctions, whereas reference 43 presents a more general analysis of the distribution of extinction events throughout the fossil record.

    CAS  PubMed  Google Scholar 

  44. Smith, J. T. & Roy, K. Selectivity during background extinction: Plio-Pleistocene scallops in California. Paleobiology 32, 408–416 (2006).

    Google Scholar 

  45. Owens, I. P. F. & Bennett, P. M. Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proc. Natl Acad. Sci. USA 97, 12144–12148 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jones, K. E., Purvis, A. & Gittleman, J. L. Biological correlates of extinction risk in bats. Am. Nat. 161, 601–614 (2003).

    PubMed  Google Scholar 

  47. Cardillo, M. et al. The predictability of extinction: biological and external correlates of decline in mammals. Proc. R. Soc. Lond. B 275, 1441–1448 (2008).

    Google Scholar 

  48. Wilson, E. O. The nature of the taxon cycle in the Melanesian ant fauna. Am. Nat. 95, 169–193 (1961).

    Google Scholar 

  49. Ricklefs, R. E. & Cox, G. W. Taxon cycles in the West Indian avifauna. Am. Nat. 106, 195–219 (1972).

    Google Scholar 

  50. Ricklefs, R. E. & Bermingham, E. The concept of the taxon cycle in biogeography. Glob. Ecol. Biogeogr. 11, 353–361 (2002).

    Google Scholar 

  51. Janis, C. M., Damuth, J. & Theodor, J. M. Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? Proc. Natl Acad. Sci. USA 97, 7899–7904 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meng, J. & McKenna, M. C. Faunal turnovers of Palaeogene mammals from the Mongolian plateau. Nature 394, 364–367 (1998).

    ADS  CAS  Google Scholar 

  53. Jaramillo, C., Rueda, M. J. & Mora, G. Cenozoic plant diversity in the Neotropics. Science 311, 1893–1896 (2006).

    ADS  CAS  PubMed  Google Scholar 

  54. Crane, P. R. & Lidgard, S. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).

    ADS  CAS  PubMed  Google Scholar 

  55. Lidgard, S. & Crane, P. R. Angiosperm diversification and Cretaceous floristic trends; a comparison of palynofloras and leaf macrofloras. Paleobiology 16, 77–93 (1990).

    Google Scholar 

  56. Mayr, G. The Paleogene fossil record of birds in Europe. Biol. Rev. 80, 515–542 (2007).

    Google Scholar 

  57. Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).

    ADS  CAS  PubMed  Google Scholar 

  58. Magallón, S. & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762–1780 (2001).

    PubMed  Google Scholar 

  59. Jablonski, D. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62, 715–739 (2008).

    PubMed  Google Scholar 

  60. Rabosky, D. L. & Lovette, I. J. Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62, 1866–1875 (2008).

    PubMed  Google Scholar 

  61. Mayr, E. The Growth of Biological Thought (Harvard Univ. Press, 1982).

    Google Scholar 

  62. Gould, S. J. & Eldredge, N. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3, 115–151 (1977).

    Google Scholar 

  63. Gould, S. J. The Structure of Evolutionary Theory (Harvard Univ. Press, 2002).

    Google Scholar 

  64. Simpson, G. G. Tempo and Mode in Evolution (Columbia Univ. Press, 1944).

    Google Scholar 

  65. Wright, S. Character, change, speciation and higher taxa. Evolution 36, 427–443 (1982). This paper is ideal reading for those who wish to learn more about the debate on the relationship between microevolution and macroevolution.

    PubMed  Google Scholar 

  66. Gould, S. J. Ontongeny and Phylogeny (Harvard Univ. Press, 1977).

    Google Scholar 

Download references

Acknowledgements

We thank M. Clark, N. Hughes, D. Rabosky and J. Sachs for comments on the manuscript. D.N.R. is supported by grants from the National Science Foundation (grant numbers DEB-0416085 and DEB-0623632).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to D.N.R. (gupy@ucr.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reznick, D., Ricklefs, R. Darwin's bridge between microevolution and macroevolution. Nature 457, 837–842 (2009). https://doi.org/10.1038/nature07894

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07894

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing