Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures

A Corrigendum to this article was published on 29 June 2011

This article has been updated

Abstract

The largest extant snakes live in the tropics of South America and southeast Asia1,2,3 where high temperatures facilitate the evolution of large body sizes among air-breathing animals whose body temperatures are dependant on ambient environmental temperatures (poikilothermy)4,5. Very little is known about ancient tropical terrestrial ecosystems, limiting our understanding of the evolution of giant snakes and their relationship to climate in the past. Here we describe a boid snake from the oldest known neotropical rainforest fauna from the Cerrejón Formation (58–60 Myr ago) in northeastern Colombia. We estimate a body length of 13 m and a mass of 1,135 kg, making it the largest known snake6,7,8,9. The maximum size of poikilothermic animals at a given temperature is limited by metabolic rate4, and a snake of this size would require a minimum mean annual temperature of 30–34 °C to survive. This estimate is consistent with hypotheses of hot Palaeocene neotropics with high concentrations of atmospheric CO2 based on climate models10. Comparison of palaeotemperature estimates from the equator to those from South American mid-latitudes indicates a relatively steep temperature gradient during the early Palaeogene greenhouse, similar to that of today. Depositional environments and faunal composition of the Cerrejón Formation indicate an anaconda-like ecology for the giant snake, and an earliest Cenozoic origin of neotropical vertebrate faunas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Titanoboa cerrejonensis precloacal vertebrae.
Figure 2: Body size ranges for major snake clades plotted along phylogeny28,29,30 ( Supplementary Table 3 ).
Figure 3: Mean annual palaeotemperature and Palaeocene latitudinal temperature gradients derived from body size of the green anaconda Eunectes murinus (light green) and body size estimates of Titanoboa cerrejonensis (dark green).

Similar content being viewed by others

Change history

  • 29 June 2011

    Supplementary table 2 has been corrected. Equation 3 has been corrected online in the HTML versions; please see the corresponding Corrigendum.

References

  1. Murphy, J. C. & Henderson, R. W. Tales of Giant Snakes: A Natural History of Anacondas and Pythons (Krieger, 1997)

    Google Scholar 

  2. Rivas, J. The Life History of the Green Anaconda (Eunectes murinus), with Emphasis on its Reproductive Biology. Dissertation, Univ. Tennessee (1999)

    Google Scholar 

  3. Dirksen, L. Anakondas: monographische Revision der Gattung Eunectes Wagler 1830 (Serpentes, Boidae) (Natur und Tier, 2002)

    Google Scholar 

  4. Makarieva, A. M., Gorshkov, V. G. & Li, B.-L. Gigantism, temperature and metabolic rate in terrestrial poikilotherms. Proc. R. Soc. Lond. B 272, 2325–2328 (2005)

    Article  Google Scholar 

  5. Makarieva, A. M., Gorshkov, V. G. & Li, B.-L. Temperature-associated upper limits to body size in terrestrial poikilotherms. Oikos 111, 425–436 (2005)

    Article  Google Scholar 

  6. Rage, J.-C. Palaeophis colossaeus nov. sp. (le plus grand Serpent connu?) de l’Eocène du Mali et le problème du genre chez les Palaeopheinae. C.R. Acad. Sci. Sér. 2, 1741–1744 (1983)

    Google Scholar 

  7. Albino, A. M. Serpientes gigantes en la Patagonia. Ciencia Hoy 3, 58–63 (1991)

    Google Scholar 

  8. Scanlon, J. D. & Mackness, B. S. A new giant python from the Pliocene Bluff Downs local fauna of northeastern Queensland. Alcheringa 25, 425–437 (2002)

    Article  Google Scholar 

  9. Head, J. J. & Polly, P. D. They might be giants: morphometric methods for reconstructing body size for the World’s largest snakes. J. Vertebr. Paleontol. 24 (suppl. 3). 68A (2004)

    Google Scholar 

  10. Sloan, L. C. & Shellito, L. J. in Causes and Consequences of Globally Warm Climates in the Early Paleogene (eds Wing, S. L., Gingerich, P. D., Schmitz, B. & Thomas, E.) 25–47 (Geological Society of America Special Paper, 369, 2003)

    Google Scholar 

  11. Jaramillo, C. et al. Palynology of the upper Paleocene Cerrejón Formation, Northern Colombia. Palynology 31, 153–189 (2007)

    Google Scholar 

  12. Scanlon, J. D. Skull of the large non-macrostomatan snake Yurlunggur from the Australian Oligo–Miocene. Nature 439, 839–842 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Head, J. J. & Polly, P. D. Dissociation of somatic maturity from segmentation drives gigantism in snakes. Biol. Lett. 3, 296–298 (2007)

    Article  Google Scholar 

  14. Polly, P. D. & Head, J. J. in Morphometrics-Applications in Biology and Paleontology (ed. Elewa, A. M. T.) 197–222 (Springer, 2004)

    Google Scholar 

  15. Alexander, G. J. in Biology of the Boas and Pythons (eds Henderson, R. W. & Powell, R.) 51–75 (Eagle Mountain Publishing, 2007)

    Google Scholar 

  16. Shine, R., Harlow, P. S., Keogh, J. S. & Boeadi The influence of sex and body size on food habits of a giant tropical snake, Python reticulatus . Funct. Ecol. 12, 248–258 (1998)

    Article  Google Scholar 

  17. Alroy, J. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280, 731–734 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Shellito, C. J., Sloan, L. C. & Huber, M. Climate model sensitivity to atmospheric CO2 levels in the Early–Middle Paleogene. Palaeogeogr. Palaeclimatol. Palaeoecol. 193, 113–123 (2003)

    Article  ADS  Google Scholar 

  19. Pearson, P. N. et al. Stable warm tropical climate through the Eocene epoch. Geology 35, 211–214 (2007)

    Article  ADS  Google Scholar 

  20. Herrera, F., Wing, S. & Jaramillo, C. Warm (not hot) tropics during the Late Paleocene. First Continental Evidence. Eos Trans. AGU 86 (Suppl.). PP51C–0608 (2005)

    Google Scholar 

  21. Kowalski, E. A. & Dilcher, D. L. Warmer paleotemperatures for terrestrial ecosystems. Proc. Natl Acad. Sci. USA 100, 167–170 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Burnham, R. J. & Johnson, K. R. South American paleobotany and the origins of neotropical rainforests. Phil. Trans. R. Soc. Lond. B 359, 1595–1610 (2004)

    Article  Google Scholar 

  23. Hogan, K. P., Smith, A. P. & Ziska, L. H. Potential effects of elevated CO2 and changes in temperature on tropical plants. Plant Cell Environ. 14, 763–778 (1991)

    Article  Google Scholar 

  24. Iglesias, A. et al. A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs. Geology 35, 947–950 (2007)

    Article  ADS  Google Scholar 

  25. Crowley, T. J. & Zachos, J. C. in Warm Climates in Earth History (eds Huber, B. T., MacLeod, K. G. & Wing, S. L.) 50–76 (Cambridge Univ. Press, 2000)

    Google Scholar 

  26. Huber, M. A hotter greenhouse? Science 321, 353–354 (2008)

    Article  CAS  Google Scholar 

  27. Chappell, M. A. & Ellis, T. M. Resting metabolic rates in boid snakes: allometric relationships and temperature effects. J. Comp. Physiol. B 157, 227–235 (1987)

    Article  CAS  Google Scholar 

  28. Vidal, N. & Hedges, S. B. Higher-level relationships of snakes inferred from four nuclear and mitochondrial genes. C.R. Biol. 325, 977–985 (2002)

    Article  CAS  Google Scholar 

  29. Lawson, R., Slowinski, J. B. & Burbrink, F. T. A molecular approach to discerning the phylogenetic placement of the enigmatic snake Xenophidion schaeferi among the Alethinophidia. J. Zool. (Lond.) 263, 285–294 (2004)

    Article  Google Scholar 

  30. Vidal, N. et al. The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. C.R. Biol. 330, 182–187 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Bell, R. Ghent, E. Kowalski, A. M. Lawing, B. MacFadden, R. Reisz and S. Wing for advice and discussion, K. Seymour, K. Krysko, K. deQueiroz and G. Zug for access to comparative specimens, A. Rincon and M. Carvalho for fieldwork, J. Mason, K. Church, J. Mathis and J. Nestler for fossil preparation, and K. Krysko and J. Nestler for photographic assistance. We thank Carbones del Cerrejón, L. Teicher, F. Chavez, C. Montes and G. Hernandez for logistical support and access to the Cerrejón mine. This research was funded by the National Science Foundation, Fondo para Investigaciones del Banco de la Republica de Colombia, Smithsonian Tropical Research Institute Paleobiology Fund, the Florida Museum of Natural History, a Geological Society of America Graduate Student Research Grant to A.K.H., and a National Sciences and Engineering Research Council of Canada Discovery Grant to J.J.H.

Author Contributions J.J.H., J.I.B., C.A.J., P.D.P., A.K.H. and J.R.B. contributed to project planning. J.J.H. and J.I.B. contributed to systematic palaeontology. J.J.H., P.D.P., J.I.B., A.K.H., J.R.B. and E.A.C. contributed to body size estimation. J.J.H., J.I.B., F.A.H., P.D.P. and C.A.J. contributed to palaeoclimatic analysis. J.I.B., A.K.H., E.A.C., F.A.H. and C.A.J. contributed to fieldwork. J.I.B., A.K.H., C.A.J. and J.J.H. contributed to financial support. All authors contributed to manuscript and figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. Head.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-4 with Legends, Supplementary Data and Supplementary Tables 1-3. Supplementary table 2 has been corrected since its original online publication. (PDF 640 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Head, J., Bloch, J., Hastings, A. et al. Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature 457, 715–717 (2009). https://doi.org/10.1038/nature07671

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07671

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing