Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diversity dynamics of marine planktonic diatoms across the Cenozoic

Abstract

Diatoms are the dominant group of phytoplankton in the modern ocean. They account for approximately 40% of oceanic primary productivity and over 50% of organic carbon burial in marine sediments1. Owing to their role as a biological carbon pump2 and effects on atmospheric CO2 levels3,4,5, there is great interest in elucidating factors that influenced the rapid rise in diatom diversity during the past 40 million years6,7. Two biotic controls on diversification have been proposed to explain this diversity increase: (1) geochemical coupling between terrestrial grasslands and marine ecosystems through the global silicon cycle; and (2) competitive displacement of other phytoplankton lineages. However, these hypotheses have not been tested using sampling-standardized fossil data. Here we show that reconstructions of species diversity in marine phytoplankton reject these proposed controls and suggest a new pattern for oceanic diatom diversity across the Cenozoic. Peak species diversity in marine planktonic diatoms occurred at the Eocene–Oligocene boundary and was followed by a pronounced decline, from which diversity has not recovered. Although the roles of abiotic and biotic drivers of diversification remain unclear, major features of oceanic diatom evolution are decoupled from both grassland expansion and competition among phytoplankton groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Traditional and sampling-standardized diatom diversity curves.
Figure 2: Coccolithophorid diversity through time based on sampling-standardized analysis of the Neptune database.
Figure 3: Correlations between de-trended diatom and coccolithophorid diversity between the mid-Eocene and the Pleistocene.

Similar content being viewed by others

References

  1. Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Treguer, P. & Pondaven, P. Global change – silica control of carbon dioxide. Nature 406, 358–359 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998)

    Article  CAS  Google Scholar 

  4. Milligan, A. J. & Morel, F. M. M. A proton buffering role for silica in diatoms. Science 297, 1848–1850 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Katz, M. E. et al. Biological overprint of the geological carbon cycle. Mar. Geol. 217, 323–338 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Falkowski, P. G., Schofield, O., Katz, M. E., Van De Schootbrugge, B. & Knoll, A. H. in Coccolithophores: From Molecular Processes to Global Impact (eds Therstein, H. R. & Young, J. R.) 429–454 (Springer, 2004)

    Book  Google Scholar 

  7. Finkel, Z. V., Katz, M. E., Wright, J. D., Schofield, O. M. E. & Falkowski, P. G. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proc. Natl Acad. Sci. USA 201, 8927–8932 (2005)

    Article  ADS  Google Scholar 

  8. Kidder, D. L. & Gierlowski-Kordesch, E. H. Impact of grassland radiation on the nonmarine silica cycle and Miocene diatomite. Palaios 20, 198–206 (2005)

    Article  ADS  Google Scholar 

  9. Kidder, D. L. & Erwin, D. H. Secular distribution of biogenic silica through the phanerozoic: comparison of silica-replaced fossils and bedded cherts at the series level. J. Geol. 109, 509–522 (2001)

    Article  ADS  Google Scholar 

  10. Blecker, S. W., McCulley, R. L., Chadwick, O. A. & Kelly, E. F. Biologic cycling of silica across a grassland bioclimosequence. Glob. Biogeochem. Cycles 20, GB3023 (2006)

    Article  ADS  Google Scholar 

  11. Spencer-Cervato, C. The Cenozoic deep-sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune database. Palaeontol. Electron. 2, 1–268 (1999)

    Google Scholar 

  12. Alroy, J. et al. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc. Natl Acad. Sci. USA 98, 6261–6266 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Raup, D. M. Taxonomic diversity during the Phanerozoic. Science 177, 1065–1071 (1972)

    Article  ADS  CAS  Google Scholar 

  14. Alroy, J. The dynamics of origination and extinction in the marine fossil record. Proc. Natl Acad. Sci. USA 105, 11536–11542 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Miller, A. I. & Foote, M. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22, 304–309 (1996)

    Article  CAS  Google Scholar 

  16. Smith, E. P., Stewart, P. M. & Cairns, J. Similarities between rarefaction methods. Hydrobiologia 120, 167–170 (1985)

    Article  Google Scholar 

  17. Alroy, J. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26, 707–733 (2000)

    Article  Google Scholar 

  18. Stromberg, C. A. E. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proc. Natl Acad. Sci. USA 102, 11980–11984 (2005)

    Article  ADS  Google Scholar 

  19. Retallack, G. J. Cenozoic expansion of grasslands and climatic cooling. J. Geol. 109, 407–426 (2001)

    Article  ADS  CAS  Google Scholar 

  20. MacFadden, B. J. Fossil Horses (Cambridge Univ. Press, 1992)

    Google Scholar 

  21. Margalef, R. Our Biosphere (Ecology Institute, 1997)

    Google Scholar 

  22. Sellner, K. G., Sellner, S. G., Lacouture, R. V. & Magnien, R. E. Excessive nutrients select for dinoflagellates in the stratified Patapsco River estuary: Margalef reigns. Mar. Ecol. Prog. Ser. 220, 93–102 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Tozzi, S., Schofield, O. & Falkowski, P. Historical climate change and ocean turbulence as selective agents for two key phytoplankton functional groups. Mar. Ecol. Prog. Ser. 274, 123–132 (2004)

    Article  ADS  Google Scholar 

  24. Iglesias-Rodriguez, M. D. et al. Representing key phytoplankton functional groups in ocean carbon cycle models: coccolithophorids. Glob. Biogeochem. Cycles 16, 1100 (2002)

    Article  ADS  Google Scholar 

  25. Bown, P. R. Calcareous nannoplankton evolution: a tale of two oceans. Micropaleontology 51, 299–308 (2005)

    Article  Google Scholar 

  26. Katz, M. E., Finkel, Z. V., Grzebyk, D., Knoll, A. H. & Falkowski, P. G. Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annu. Rev. Ecol. Evol. Syst. 35, 523–556 (2004)

    Article  Google Scholar 

  27. Prothero, D. R., Ivany, L. C. & Nesbitt, E. A. (eds) From Greenhouse to Icehouse: The Marine Eocene–Oligocene Transition (Columbia Univ. Press, 2003)

    Google Scholar 

  28. Zanazzi, A., Kohn, M. J., MacFadden, B. J. & Terry, D. O. Large temperature drop across the Eocene–Oligocene transition in central North. Am. Nat. 445, 639–642 (2007)

    Article  CAS  Google Scholar 

  29. Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005)

    Article  ADS  CAS  Google Scholar 

  30. Sepkoski, J. J. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7, 36–53 (1981)

    Article  Google Scholar 

  31. Bush, A. M., Markey, M. J. & Marshall, C. R. Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling-standardization. Paleobiology 30, 666–686 (2004)

    Article  Google Scholar 

  32. Alroy, J. et al. Phanerozoic trends in the diversity of marine invertebrates. Science 321, 97–100 (2008)

    Article  ADS  CAS  Google Scholar 

  33. Paul, C. R. C. in The Adequacy of the Fossil Record (eds Donovan, S. K. & Paul, C. R. C.) 1–22 (Wiley, 1982)

    Google Scholar 

  34. Foote, M. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology 20, 320–344 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Alroy for comments on our statistical analyses and for suggesting the binomial approximation for confidence limits on diversity; and M. Foote, I. Lovette, A. McCune, A. Agrawal, N. Hairston and the BK Discussion Group for comments on the manuscript. This research was supported in part by NSF-OSIEE-0612855. Part of this work used the resources of the Computational Biology Service Unit from Cornell University, which is partly funded by the Microsoft Corporation.

Author Contributions Both authors contributed to study design and the interpretation of results. D.L.R. conducted the analyses and drafted the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Rabosky.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures S1-S1- with Legends (PDF 1683 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabosky, D., Sorhannus, U. Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature 457, 183–186 (2009). https://doi.org/10.1038/nature07435

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07435

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing