Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The missing memristor found

A Corrigendum to this article was published on 25 June 2009

Abstract

Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor)1. Although he showed that such an element has many interesting and valuable circuit properties, until now no one has presented either a useful physical model or an example of a memristor. Here we show, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage. These results serve as the foundation for understanding a wide range of hysteretic current–voltage behaviour observed in many nanoscale electronic devices2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 that involve the motion of charged atomic or molecular species, in particular certain titanium dioxide cross-point switches20,21,22.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The four fundamental two-terminal circuit elements: resistor, capacitor, inductor and memristor.
Figure 2: The coupled variable-resistor model for a memristor.
Figure 3: Simulations of a voltage-driven memristive device.

References

  1. Chua, L. O. Memristor - the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. Hickmott, M. T. Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962)

    Article  ADS  CAS  Google Scholar 

  3. Dearnaley, G., Stoneham, A. M. & Morgan, D. V. Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129–1192 (1970)

    Article  ADS  Google Scholar 

  4. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Scott, J. C. & Bozano, L. D. Nonvolatile memory elements based on organic materials. Adv. Mater. 19, 1452–1463 (2007)

    Article  CAS  Google Scholar 

  6. Collier, C. P. et al. A [2]catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Zhitenev, N. B., Sidorenko, A., Tennant, D. M. & Cirelli, R. A. Chemical modification of the electronic conducting states in polymer nanodevices. Nature Nanotechnol. 2, 237–242 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Smits, J. H. A., Meskers, S. C. J., Janssen, R. A. J., Marsman, A. W. & de Leeuw, D. M. Electrically rewritable memory cells from poly(3-hexylthiophene) Schottky diodes. Adv. Mater. 17, 1169–1173 (2005)

    Article  CAS  Google Scholar 

  9. Lai, Q. X., Zhu, Z. H., Chen, Y., Patil, S. & Wudl, F. Organic nonvolatile memory by dopant-configurable polymer. Appl. Phys. Lett. 88, 133515 (2006)

    Article  ADS  Google Scholar 

  10. Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Kozicki, M. N., Park, M. & Mitkova, M. Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. Nanotechnol. 4, 331–338 (2005)

    Article  ADS  Google Scholar 

  12. Dietrich, S. et al. A nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program control. IEEE J. Solid State Circuits 42, 839–845 (2007)

    Article  ADS  Google Scholar 

  13. Jameson, J. R. et al. Field-programmable rectification in rutile TiO2 crystals. Appl. Phys. Lett. 91, 112101 (2007)

    Article  ADS  Google Scholar 

  14. Jeong, D. S., Schroeder, H. & Waser, R. Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochem. Solid State Lett. 10, G51–G53 (2007)

    Article  CAS  Google Scholar 

  15. Beck, A., Bednorz, J. G., Gerber, C., Rossel, C. & Widmer, D. Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139–141 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Szot, K., Speier, W., Bihlmayer, G. & Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 . Nature Mater. 5, 312–320 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Sawa, A., Fujii, T., Kawasaki, M. & Tokura, Y. Interface resistance switching at a few nanometer thick perovskite manganite active layers. Appl. Phys. Lett. 88, 232112 (2006)

    Article  ADS  Google Scholar 

  18. Hamaguchi, M., Aoyama, K., Asanuma, S., Uesu, Y. & Katsufuji, T. Electric-field-induced resistance switching universally observed in transition-metal-oxide thin films. Appl. Phys. Lett. 88, 142508 (2006)

    Article  ADS  Google Scholar 

  19. Oligschlaeger, R., Waser, R., Meyer, R., Karthauser, S. & Dittmann, R. Resistive switching and data reliability of epitaxial (Ba,Sr)TiO3 thin films. Appl. Phys. Lett. 88, 042901 (2006)

    Article  ADS  Google Scholar 

  20. Richter, C. A., Stewart, D. R., Ohlberg, D. A. A. & Williams, R. S. Electrical characterization of Al/AlO x /molecule/Ti/Al devices. Appl. Phys. Mater. Sci. Process. 80, 1355–1362 (2005)

    Article  CAS  Google Scholar 

  21. Stewart, D. R. et al. Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett. 4, 133–136 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Blackstock, J. J., Stickle, W. F., Donley, C. L., Stewart, D. R. & Williams, R. S. Internal structure of a molecular junction device: chemical reduction of PtO2 by Ti evaporation onto an interceding organic monolayer. J. Phys. Chem. C 111, 16–20 (2007)

    Article  CAS  Google Scholar 

  23. Chua, L. O. & Kang, S. M. Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  24. Kuekes, P. J., Snider, G. S. & Williams, R. S. Crossbar nanocomputers. Sci. Am. 293, 72–78 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Strukov, D. B. & Likharev, K. K. Defect-tolerant architectures for nanoelectronic crossbar memories. J. Nanosci. Nanotechnol. 7, 151–167 (2007)

    CAS  PubMed  Google Scholar 

  26. Blanc, J. & Staebler, D. L. Electrocoloration in SrTiO - vacancy drift and oxidation-reduction of transition metals. Phys. Rev. B 4, 3548–3557 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was conducted with partial support from DARPA and DTO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stanley Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strukov, D., Snider, G., Stewart, D. et al. The missing memristor found. Nature 453, 80–83 (2008). https://doi.org/10.1038/nature06932

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06932

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing