Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gamete formation without meiosis in Arabidopsis

Abstract

Apomixis, the formation of asexual seeds in plants, leads to populations that are genetically uniform maternal clones. The transfer of apomixis to crop plants holds great promise in plant breeding for fixation of heterozygosity and hybrid vigour because it would allow the propagation of hybrids over successive generations1,2. Apomixis involves the production of unreduced (diploid) female gametes that retain the genotype of the parent plant (apomeiosis), followed by parthenogenetic development of the egg cell into an embryo and the formation of functional endosperm3. The molecular mechanisms underlying apomixis are unknown. Here we show that mutation of the Arabidopsis gene DYAD/SWITCH1 (SWI1)4,5, a regulator of meiotic chromosome organization, leads to apomeiosis. We found that most fertile ovules in dyad plants form seeds that are triploid and that arise from the fertilization of an unreduced female gamete by a haploid male gamete. The unreduced female gametes fully retain parental heterozygosity across the genome, which is characteristic of apomeiosis. Our results show that the alteration of a single gene in a sexual plant can bring about functional apomeiosis, a major component of apomixis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dyad mutant produces triploid progeny.
Figure 2: Triploids arise from a maternal excess contribution.
Figure 3: dyad ovules express a functional megaspore marker.

Similar content being viewed by others

References

  1. Koltunow, A. M., Bicknell, R. A. & Chaudhury, A. M. Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol. 108, 1345–1352 (1995)

    Article  CAS  Google Scholar 

  2. Spillane, C., Steimer, A. & Grossniklaus, U. Apomixis in agriculture: the quest for clonal seeds. Sex. Plant Reprod. 14, 179–187 (2001)

    Article  CAS  Google Scholar 

  3. Koltunow, A. M. & Grossniklaus, U. Apomixis: a developmental perspective. Annu. Rev. Plant Biol. 54, 547–574 (2003)

    Article  CAS  Google Scholar 

  4. Mercier, R. et al. SWITCH1 (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes Dev. 15, 1859–1871 (2001)

    Article  CAS  Google Scholar 

  5. Agashe, B., Prasad, C. K. & Siddiqi, I. Identification and analysis of DYAD: a gene required for meiotic chromosome organisation and female meiotic progression in Arabidopsis. Development 129, 3935–3943 (2002)

    CAS  PubMed  Google Scholar 

  6. Mogie, M. A model for the evolution and control of generative apomixis. Biol. J. Linn. Soc. 35, 127–154 (1988)

    Article  Google Scholar 

  7. Siddiqi, I., Ganesh, G., Grossniklaus, U. & Subbiah, V. The dyad gene is required for progression through female meiosis in Arabidopsis. Development 127, 197–207 (2000)

    CAS  PubMed  Google Scholar 

  8. Altmann, T. et al. Easy determination of ploidy level in Arabidopsis thaliana plants by means of pollen size measurement. Plant Cell Rep. 13, 652–666 (1994)

    Article  CAS  Google Scholar 

  9. Dilkes, B. P. & Comai, L. A. Differential dosage hypothesis for parental effects in seed development. Plant Cell 16, 3174–3180 (2004)

    Article  Google Scholar 

  10. Spielman, M., Vinkenoog, R., Dickinson, H. G. & Scott, R. J. The epigenetic basis of gender in flowering plants and mammals. Trends Genet. 17, 705–711 (2001)

    Article  CAS  Google Scholar 

  11. Bretagnolle, F. & Thompson, J. D. Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol. 129, 1–22 (1995)

    Article  Google Scholar 

  12. Rhoades, M. M. & Dempsey, E. Induction of chromosome doubling at meiosis by the elongate gene in maize. Genetics 54, 505–522 (1966)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Finch, R. A. & Bennet, M. D. Action of triploid inducer (tri) on meiosis in barley (Hordeum vulgare L.). Hereditas 43, 87–93 (1979)

    Article  Google Scholar 

  14. Curtis, C. A. & Doyle, D. G. Production of aneuploid and diploid eggs by meiotic mutants of maize. J. Hered. 83, 335–341 (1992)

    Article  Google Scholar 

  15. Douches, D. S. & Quiros, C. F. Genetic strategies to determine the mode of 2n egg formation in diploid potatoes. Euphytica 38, 247–260 (1988)

    Article  Google Scholar 

  16. Barone, A., Gebhardt, C. & Frusciante, L. Heterozygosity in 2n gametes of potato evaluated by RFLP markers. Theor. Appl. Genet. 91, 98–104 (1995)

    Article  CAS  Google Scholar 

  17. Vorsa, L. & Rowland, L. J. Estimation of 2n megagametophyte heterozygosity in a diploid Blueberry (Vaccinium darrowi Camp) clone using RAPDs. J. Hered. 8, 423–426 (1997)

    Article  Google Scholar 

  18. Noyes, R. D. Inheritance of apomeiosis (diplospory) in fleabanes (Erigeron, Asteraceae). Heredity 94, 193–198 (2005)

    Article  CAS  Google Scholar 

  19. Savidan, Y. H. Apomixis: genetics and breeding. Plant Breed. Rev. 18, 13–86 (2000)

    CAS  Google Scholar 

  20. Huanca-Mamani, W., Garcia-Aguilar, M., Leon-Martinez, G., Grossniklaus, U. & Vielle-Calzada, J. P. CHR11, a chromatin-remodeling factor essential for nuclear proliferation during female gametogenesis in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 102, 17231–17236 (2005)

    Article  CAS  ADS  Google Scholar 

  21. Blakey, C. A., Goldman, S. L. & Dewald, C. L. Apomixis in Tripsacum: Comparative mapping of a multigene phenomenon. Genome 44, 222–230 (2001)

    Article  CAS  Google Scholar 

  22. Hamant, O., Ma, H. & Cande, W. Z. Genetics of meiotic prophase I in plants. Annu. Rev. Plant Biol. 57, 267–302 (2006)

    Article  CAS  Google Scholar 

  23. Chen, K. Y., Cong, B., Wing, R., Vrebalov, J. & Tanksley, S. D. Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318, 643–645 (2007)

    Article  CAS  ADS  Google Scholar 

  24. Ozias-Akins, P., Roche, D. & Hanna, W. W. Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc. Natl Acad. Sci. USA 95, 5127–5132 (1998)

    Article  CAS  ADS  Google Scholar 

  25. Pessino, S. C. et al. A genetic map of the apospory-region in Brachiaria hybrids: Identification of two markers closely associated with the trait. Hereditas 128, 153–158 (1998)

    Article  Google Scholar 

  26. Grimanelli, D. et al. Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or several genes? Heredity 80, 33–39 (1998)

    Article  Google Scholar 

  27. Pupilli, F. et al. Comparative mapping reveals partial conservation of synteny at the apomixis locus in Paspalum spp. Mol. Genet. Genomics 270, 539–548 (2004)

    Article  CAS  Google Scholar 

  28. Guitton, A. E. & Berger, F. Loss of function MULTICOPY SUPPRESSOR OF IRA1 produces nonviable parthenogenetic embryos in Arabidopsis.. Curr. Biol. 15, 750–754 (2005)

    Article  CAS  Google Scholar 

  29. Sundaresan, V. et al. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9, 1797–1810 (1995)

    Article  CAS  Google Scholar 

  30. Ross, K. J., Fransz, P. & Jones, G. H. A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res. 4, 507–516 (1996)

    Article  CAS  Google Scholar 

  31. Dellaporta, S. L., Wood, J. & Hicks, J. B. A plant DNA minpreparation: version II. Plant Mol. Biol. Rep. 1, 19–21 (1983)

    Article  CAS  Google Scholar 

  32. Alexander, M. P. Differential staining of aborted and nonaborted pollen. Stain Technol. 44, 117–122 (1969)

    Article  CAS  Google Scholar 

  33. Bechtold, N., Ellis, J. & Pelletier, G. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Life Sci. 316, 1194–1199 (1993)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Vijaybhaskar and V. Subbiah for characterization of the ET60 transposon line; S. Andreuzza, J. Dhawan, S. Mayor, B. Nishal, M. Ramaswami, A. Ray and O. Siddiqi for comments on the manuscript; and the ABRC for seeds. This work was supported by the Council for Scientific and Industrial Research (CSIR; Government of India), and a Centre of Excellence grant from the Department of Biotechnology (to I.S.). M.R. and M.M. were supported by fellowships from the University Grants Commission and the CSIR, respectively.

Author Contributions M.P.M. conducted the experiments on marker gene expression and interpreted the results. M.R. and I.S. planned, and M.R. performed, the remaining experiments and interpreted the results. I.S. wrote the paper with input from M.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Siddiqi.

Supplementary information

Supplementary Information

This file contains: Supplementary Figure 1 detailing mutant alleles and phenotypes for SWI1; Supplementary Figure 2 showing variation in pollen size; and Supplementary Note 1 showing estimation of triploid formation in dyad versus wild type. (PDF 1167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi, M., Marimuthu, M. & Siddiqi, I. Gamete formation without meiosis in Arabidopsis. Nature 451, 1121–1124 (2008). https://doi.org/10.1038/nature06557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06557

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing