Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A receptor that mediates the post-mating switch in Drosophila reproductive behaviour

Abstract

Mating in many species induces a dramatic switch in female reproductive behaviour. In most insects, this switch is triggered by factors present in the male’s seminal fluid. How these factors exert such profound effects in females is unknown. Here we identify a receptor for the Drosophila melanogaster sex peptide (SP, also known as Acp70A), the primary trigger of post-mating responses in this species. Females that lack the sex peptide receptor (SPR, also known as CG16752), either entirely or only in the nervous system, fail to respond to SP and continue to show virgin behaviours even after mating. SPR is expressed in the female’s reproductive tract and central nervous system. The behavioural functions of SPR map to the subset of neurons that also express the fruitless gene, a key determinant of sex-specific reproductive behaviour. SPR is highly conserved across insects, opening up the prospect of new strategies to control the reproductive and host-seeking behaviours of agricultural pests and human disease vectors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SPR is required for the post-mating switch induced by SP.
Figure 2: SPR is a specific SP receptor.
Figure 3: SPR is expressed in the female reproductive organs and nervous system.
Figure 4: SPR acts in fru neurons.
Figure 5: Structural and functional conservation of insect SPRs.

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

Nucleotide sequences and translations of the reported SPRs have been deposited in the GenBank database under the following accession numbers: D. pseudoobscura, EU106873; A. aegypti, EU106874; A. gambiae, EU106875; B. mori, EU106876; and T. castaneum, EU106877.

References

  1. Arthur, B. I., Jallon, J. M., Caflisch, B., Choffat, Y. & Nothiger, R. Sexual behaviour in Drosophila is irreversibly programmed during a critical period. Curr. Biol. 8, 1187–1190 (1998)

    Article  CAS  PubMed  Google Scholar 

  2. Morris, J. A., Jordan, C. L. & Breedlove, S. M. Sexual differentiation of the vertebrate nervous system. Nature Neurosci. 7, 1034–1039 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. Munday, P. L., Buston, P. M. & Warner, R. R. Diversity and flexibility of sex-change strategies in animals. Trends Ecol. Evol. 21, 89–95 (2006)

    Article  PubMed  Google Scholar 

  4. Demir, E. & Dickson, B. J. fruitless splicing specifies male courtship behavior in Drosophila . Cell 121, 785–794 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. Manoli, D. S. et al. Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436, 395–400 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Gillott, C. Male accessory gland secretions: modulators of female reproductive physiology and behavior. Annu. Rev. Entomol. 48, 163–184 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. Chen, P. S. et al. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster . Cell 54, 291–298 (1988)

    Article  CAS  PubMed  Google Scholar 

  8. Chapman, T. et al. The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference. Proc. Natl Acad. Sci. USA 100, 9923–9928 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, H. & Kubli, E. Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster . Proc. Natl Acad. Sci. USA 100, 9929–9933 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kvitsiani, D. & Dickson, B. J. Shared neural circuitry for female and male sexual behaviours in Drosophila . Curr. Biol. 16, R355–R356 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila . Nature 448, 151–156 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Parks, A. L. et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nature Genet. 36, 288–292 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Santel, A., Winhauer, T., Blumer, N. & Renkawitz-Pohl, R. The Drosophila don juan (dj) gene encodes a novel sperm specific protein component characterized by an unusual domain of a repetitive amino acid motif. Mech. Dev. 64, 19–30 (1997)

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt, T., Choffat, Y., Klauser, S. & Kubli, E. The Drosophila melanogaster Sex-peptide: a molecular analysis of structure–function relationships. J. Insect Physiol. 39, 361–368 (1993)

    Article  CAS  Google Scholar 

  15. Le Poul, E., Hisada, S., Mizuguchi, Y., Dupriez, V. J., Burgeon, E. & Detheux, M. Adaptation of aequorin functional assay to high throughput screening. J. Biomol. Screen. 7, 57–65 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. Harshman, L. G., Loeb, A. M. & Johnson & B. A Ecdysteroid titers in mated and unmated Drosophila melanogaster females. J. Insect Physiol. 45, 571–577 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. Chapman, T., Choffat, Y., Lucas, W. E., Kubli, E. & Partridge, L. Lack of response to sex-peptide results in increased cost of mating in dunce Drosophila melanogaster females. J. Insect Physiol. 42, 1007–1015 (1996)

    Article  CAS  Google Scholar 

  18. Conklin, B. R., Farfel, Z., Lustig, K. D., Julius, D. & Bourne, H. R. Substitution of three amino acids switches receptor specificity of Gqα to that of Giα. Nature 363, 274–276 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Conklin, B. R. et al. Carboxyl-terminal mutations of Gqα and Gsα that alter the fidelity of receptor activation. Mol. Pharmacol. 50, 885–890 (1996)

    CAS  PubMed  Google Scholar 

  20. Meeusen, T. et al. Identification in Drosophila melanogaster of the invertebrate G protein-coupled FMRFamide receptor. Proc. Natl Acad. Sci. USA 99, 15363–15368 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cazzamali, G. & Grimmelikhuijzen, C. J. Molecular cloning and functional expression of the first insect FMRFamide receptor. Proc. Natl Acad. Sci. USA 99, 12073–12078 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park, Y., Kim, Y.-J. & Adams, M. E. Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand–receptor coevolution. Proc. Natl Acad. Sci. USA 99, 11423–11428 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rosenkilde, C. et al. Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2. Biochem. Biophys. Res. Commun. 309, 485–494 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Saudan, P. et al. Ductus ejaculatorius peptide 99B (DUP99B), a novel Drosophila melanogaster sex-peptide pheromone. Eur. J. Biochem. 269, 989–997 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. Bloch Qazi, M. C., Heifetz, Y. & Wolfner, M. F. The developments between gametogenesis and fertilization: ovulation and female sperm storage in Drosophila melanogaster . Dev. Biol. 256, 195–211 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. Kubli, E. Sex-peptides: seminal peptides of the Drosophila male. Cell. Mol. Life Sci. 60, 1689–1704 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Peng, J. et al. Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila . Curr. Biol. 15, 207–213 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Ottiger, M., Soller, M., Stocker, R. F. & Kubli, E. Binding sites of Drosophila melanogaster sex peptide pheromones. J. Neurobiol. 44, 57–71 (2000)

    Article  CAS  PubMed  Google Scholar 

  29. Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L. & Dickson, B. J. Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. Fan, Y., Rafaeli, A., Gileadi, C., Kubli, E. & Applebaum, S. W. Drosophila melanogaster sex peptide stimulates juvenile hormone synthesis and depresses sex pheromone production in Helicoverpa armigera . J. Insect Physiol. 45, 127–133 (1999)

    Article  CAS  PubMed  Google Scholar 

  31. Fan, Y. et al. Common functional elements of Drosophila melanogaster seminal peptides involved in reproduction of Drosophila melanogaster and Helicoverpa armigera females. Insect Biochem. Mol. Biol. 30, 805–812 (2000)

    Article  CAS  PubMed  Google Scholar 

  32. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993)

    CAS  PubMed  Google Scholar 

  33. Groth, A. C., Fish, M., Nusse, R. & Calos, M. P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–1782 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994)

    Article  CAS  PubMed  Google Scholar 

  35. Kim, Y.-J. et al. Corazonin receptor signaling in ecdysis initiation. Proc. Natl Acad. Sci. USA 101, 6704–6709 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aza-Blanc, P., Lin, H. Y., Ruiz i Altaba, A. & Kornberg, T. B. Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities. Development 127, 4293–4301 (2000)

    PubMed  Google Scholar 

  37. Backhaus, B., Sulkowski, E. & Schlote, F. W. A semi-synthetic, general-purpose medium for Drosophila melanogaster . Dros. Inf. Serv. 60, 210–212 (1984)

    Google Scholar 

  38. Johnson, E. C. et al. Identification of Drosophila neuropeptide receptors by G protein-coupled receptors–β-arrestin2 interactions. J. Biol. Chem. 278, 52172–52178 (2003)

    Article  CAS  PubMed  Google Scholar 

  39. Vernon, W. I. & Printen, J. A. Assay for intracellular calcium using a codon-optimized aequorin. Biotechniques 33, 730–734 (2002)

    Article  CAS  PubMed  Google Scholar 

  40. O’Neill, E. M., Rebay, I., Tjian, R. & Rubin, G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78, 137–147 (1994)

    Article  PubMed  Google Scholar 

  41. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  CAS  PubMed  Google Scholar 

  42. Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998)

    Article  CAS  PubMed  Google Scholar 

  43. Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G. & Gibson, T. J. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23, 403–405 (1998)

    Article  CAS  PubMed  Google Scholar 

  45. Felsenstein, J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle. (2005)

Download references

Acknowledgements

We thank A. Schleiffer for preparation of the phylogenetic tree, R. Fuchs and G. Krssakova for technical assistance, M. Calos, K-C. Su and S. Oppel for φC31 reagents, and G. Bucher and D. Zitnan for insect stocks. We particularly thank E. Kubli for many reagents and discussions. Y-J.K. was supported by a Lise Meitner postdoctoral fellowship from the Austrian Science Fund, and C.R. was supported by an EMBO postdoctoral fellowship and an Advanced Researcher fellowship from the Swiss National Science Foundation. Basic research at the IMP is funded by Boehringer Ingelheim GmbH.

Author Contributions N.Y. and C.R. identified D. melanogaster SPR in the RNAi screen, N.Y. performed the initial molecular analysis and all behavioural assays, and Y.-J.K. performed the cellular assays and immunohistochemistry and cloned SPR orthologues from other insects. B.J.D. supervised the project and wrote the manuscript together with N.Y. and Y-J.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry J. Dickson.

Supplementary information

Supplementary Information

The file contains Supplementary Figures S1-S3 with Legends (PDF 2146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yapici, N., Kim, YJ., Ribeiro, C. et al. A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451, 33–37 (2008). https://doi.org/10.1038/nature06483

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06483

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing