Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1

Abstract

With the emergence of multidrug resistant (MDR) bacteria, it is imperative to develop new intervention strategies. Current antibiotics typically target pathogen rather than host-specific biochemical pathways1. Here we have developed kinase inhibitors that prevent intracellular growth of unrelated pathogens such as Salmonella typhimurium and Mycobacterium tuberculosis. An RNA interference screen of the human kinome using automated microscopy revealed several host kinases capable of inhibiting intracellular growth of S. typhimurium. The kinases identified clustered in one network around AKT1 (also known as PKB). Inhibitors of AKT1 prevent intracellular growth of various bacteria including MDR-M. tuberculosis. AKT1 is activated by the S. typhimurium effector SopB, which promotes intracellular survival by controlling actin dynamics through PAK4, and phagosome–lysosome fusion through the AS160 (also known as TBC1D4)–RAB14 pathway. AKT1 inhibitors counteract the bacterial manipulation of host signalling processes, thus controlling intracellular growth of bacteria. By using a reciprocal chemical genetics approach, we identified kinase inhibitors with antibiotic properties and their host targets, and we determined host signalling networks that are activated by intracellular bacteria for survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The protein-kinase-A inhibitor H-89 inhibits host kinases that control intracellular Salmonella typhimurium growth.
Figure 2: Chemical profiling for antibiotic activity of kinase inhibitors.
Figure 3: Identification of host kinases controlling intracellular growth of S. typhimurium.
Figure 4: Identification of host kinase targets for the chemical compounds inhibiting S. typhimurium and (MDR-) M. tuberculosis.
Figure 5: Mechanisms of AKT1 control of intracellular S. typhimurium infections.

Similar content being viewed by others

References

  1. Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature 406, 775–781 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. Meresse, S. et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biol. 1, E183–E188 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. Vergne, I., Chua, J., Singh, S. B. & Deretic, V. Cell biology of mycobacterium tuberculosis phagosome. Annu. Rev. Cell Dev. Biol. 20, 367–394 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. Boucrot, E., Henry, T., Borg, J. P., Gorvel, J. P. & Meresse, S. The intracellular fate of Salmonella depends on the recruitment of kinesin. Science 308, 1174–1178 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Harrison, R. E., Bucci, C., Vieira, O. V., Schroer, T. A. & Grinstein, S. Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol. Cell. Biol. 23, 6494–6506 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Uchiya, K. & Nikai, T. Salmonella enterica serovar Typhimurium infection induces cyclooxygenase 2 expression in macrophages: involvement of Salmonella pathogenicity island 2. Infect. Immun. 72, 6860–6869 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kashina, A. S. et al. Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles. Curr. Biol. 14, 1877–1881 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Engh, R. A., Girod, A., Kinzel, V., Huber, R. & Bossemeyer, D. Crystal structures of catalytic subunit of cAMP-dependent protein kinase in complex with isoquinolinesulfonyl protein kinase inhibitors H7, H8, and H89. Structural implications for selectivity. J. Biol. Chem. 271, 26157–26164 (1996)

    Article  CAS  PubMed  Google Scholar 

  9. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Agaisse, H. et al. Genome-wide RNAi screen for host factors required for intracellular bacterial infection. Science 309, 1248–1251 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Philips, J. A., Rubin, E. J. & Perrimon, N. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309, 1251–1253 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Pelkmans, L. et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436, 78–86 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Davies, T. G. et al. A structural comparison of inhibitor binding to PKB, PKA and PKA–PKB chimera. J. Mol. Biol. 367, 882–894 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. Chua, J., Vergne, I., Master, S. & Deretic, V. A tale of two lipids: Mycobacterium tuberculosis phagosome maturation arrest. Curr. Opin. Microbiol. 7, 71–77 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. Pendaries, C. et al. PtdIns5P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J. 25, 1024–1034 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hernandez, L. D., Hueffer, K., Wenk, M. R. & Galan, J. E. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304, 1805–1807 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Knodler, L. A., Finlay, B. B. & Steele-Mortimer, O. The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J. Biol. Chem. 280, 9058–9064 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. Scott, C. C. et al. Phosphatidylinositol-4,5-bisphosphate hydrolysis directs actin remodeling during phagocytosis. J. Cell Biol. 169, 139–149 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wells, C. M., Abo, A. & Ridley, A. J. PAK4 is activated via PI3K in HGF-stimulated epithelial cells. J. Cell Sci. 115, 3947–3956 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Callow, M. G., Zozulya, S., Gishizky, M. L., Jallal, B. & Smeal, T. PAK4 mediates morphological changes through the regulation of GEF-H1. J. Cell Sci. 118, 1861–1872 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. Qu, J. et al. Activated PAK4 regulates cell adhesion and anchorage-independent growth. Mol. Cell. Biol. 21, 3523–3533 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rupper, A. C., Rodriguez-Paris, J. M., Grove, B. D. & Cardelli, J. A. p110-related PI 3-kinases regulate phagosome-phagosome fusion and phagosomal pH through a PKB/Akt dependent pathway in Dictyostelium . J. Cell Sci. 114, 1283–1295 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Smith, A. C. et al. A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar Typhimurium. J. Cell Biol. 176, 263–268 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kyei, G. B. et al. Rab14 is critical for maintenance of Mycobacterium tuberculosis phagosome maturation arrest. EMBO J. 25, 5250–5259 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harris, E. & Cardelli, J. RabD, a Dictyostelium Rab14-related GTPase, regulates phagocytosis and homotypic phagosome and lysosome fusion. J. Cell Sci. 115, 3703–3713 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Miinea, C. P. et al. AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem. J. 391, 87–93 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pizarro-Cerda, J. & Cossart, P. Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nature Cell Biol. 6, 1026–1033 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. Granville, C. A., Memmott, R. M., Gills, J. J. & Dennis, P. A. Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin. Cancer Res. 12, 679–689 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. Strom, B. L. et al. Risk factors for gallbladder cancer. An international collaborative case-control study. Cancer 76, 1747–1756 (1995)

    Article  CAS  PubMed  Google Scholar 

  30. Wells, C. M., Abo, A. & Ridley, A. J. PAK4 is activated via PI3K in HGF-stimulated epithelial cells. J. Cell Sci. 115, 3947–3956 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. Sano, H. et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J. Biol. Chem. 278, 14599–14602 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. Nilsson, T., Jackson, M. & Peterson, P. A. Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell 58, 707–718 (1989)

    Article  CAS  PubMed  Google Scholar 

  33. Qu, J. et al. Activated PAK4 regulates cell adhesion and anchorage-independent growth. Mol. Cell. Biol. 21, 3523–3533 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patterson, G. H. & Lippincott-Schwartz, J. Selective photolabeling of proteins using photoactivatable GFP. Methods 32, 445–450 (2004)

    Article  CAS  PubMed  Google Scholar 

  35. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Larance, M. et al. Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking. J. Biol. Chem. 280, 37803–37813 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, J., Hupfeld, C. J., Taylor, S. S., Olefsky, J. M. & Tsien, R. Y. Insulin disrupts β-adrenergic signalling to protein kinase A in adipocytes. Nature 437, 569–573 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Vennegoor, C. et al. Biochemical characterization and cellular localization of a formalin-resistant melanoma-associated antigen reacting with monoclonal antibody NKI/C-3. Int. J. Cancer 35, 287–295 (1985)

    Article  CAS  PubMed  Google Scholar 

  39. Verreck, F. A. et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl Acad. Sci. USA 101, 4560–4565 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meresse, S., Steele-Mortimer, O., Finlay, B. B. & Gorvel, J. P. The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells. EMBO J. 18, 4394–4403 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zwart, W. et al. Spatial separation of HLA-DM/HLA-DR interactions within MIIC and phagosome-induced immune escape. Immunity 22, 221–233 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. Vesterlund, S., Paltta, J., Laukova, A., Karp, M. & Ouwehand, A. C. Rapid screening method for the detection of antimicrobial substances. J. Microbiol. Methods 57, 23–31 (2004)

    Article  CAS  PubMed  Google Scholar 

  43. Kremer, K. et al. Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J. Clin. Microbiol. 37, 2607–2618 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Askjaer, P. et al. RanGTP-regulated interactions of CRM1 with nucleoporins and a shuttling DEAD-box helicase. Mol. Cell. Biol. 19, 6276–6285 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bischoff, F. R. & Ponstingl, H. Catalysis of guanine nucleotide exchange of Ran by RCC1 and stimulation of hydrolysis of Ran-bound GTP by Ran-GAP1. Methods Enzymol. 257, 135–144 (1995)

    Article  CAS  PubMed  Google Scholar 

  47. Dantuma, N. P., Groothuis, T. A., Salomons, F. A. & Neefjes, J. A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling. J. Cell Biol. 173, 19–26 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jordens, I. et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein–dynactin motors. Curr. Biol. 11, 1680–1685 (2001)

    Article  CAS  PubMed  Google Scholar 

  49. Boutros, M., Bras, L. P. & Huber, W. Analysis of cell-based RNAi screens. Genome Biol. 7, R66 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  50. Malo, N., Hanley, J. A., Cerquozzi, S., Pelletier, J. & Nadon, R. Statistical practice in high-throughput screening data analysis. Nature Biotechnol. 24, 167–175 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a program grant from N.W.O. and the Dutch Cancer Society KWF to J.N. and T.H.M.O., and an EEC network grant (Microban). We thank J. Sung for the histochemical analyses of mouse tissues, W. Mooi and W. Zwart for kinase-compound modelling, S. Commandeur and K. Walburg for support in the chemical-profiling experiments, D. Holden for SopB-deficient S. typhimurium, L. Wilson for help with culturing M. tuberculosis strains, H. v. d. Elst for assistance in purification and LCMS analysis of the chemical inhibitors, K. Kremer for providing M. tuberculosis clinical isolates, K. Nealson and S. Vesterlund for Lux-S. typhimurium, C. Wells and A. Ridley for haemagglutinin-tagged PAK4 contructs, and G. Lienhard for AS160 constructs.

Author Contributions C.K. performed the kinase assays (with J.N.) and experiments with RAB14, AS160 (with M.K.) and PAK4. M.M. and C.K. performed the shRNAi screen with a library made by R.L.B. and obtained from D.A.E. C.K. performed the siRNA screening, automated microscopy and data analyses, supported by the NKI robotics facility (R.L.B., D.E.). Subcloning and sequencing was by L.J. A.T., R.v.d.N. and A.P. synthesized the kinase inhibitors under the supervision of H.O. and G.v.d.M. N.D.L.S., S.J.F.v.d.E. and A.G. performed in vivo and chemical-profiling experiments (supervised by T.H.M.O.). J.N. supervised the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Neefjes.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures S1-S16 with Legends. (PDF 2377 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuijl, C., Savage, N., Marsman, M. et al. Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 450, 725–730 (2007). https://doi.org/10.1038/nature06345

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06345

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing